File: nnls.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (58 lines) | stat: -rw-r--r-- 1,335 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import _nnls
from numpy import asarray_chkfinite, zeros, double

__all__ = ['nnls']


def nnls(A,b):
    """
    Solve ``argmin_x || Ax - b ||_2`` for ``x>=0``. This is a wrapper
    for a FORTAN non-negative least squares solver.

    Parameters
    ----------
    A : ndarray
        Matrix ``A`` as shown above.
    b : ndarray
        Right-hand side vector.

    Returns
    -------
    x : ndarray
        Solution vector.
    rnorm : float
        The residual, ``|| Ax-b ||_2``.

    Notes
    -----
    The FORTRAN code was published in the book below. The algorithm
    is an active set method. It solves the KKT (Karush-Kuhn-Tucker)
    conditions for the non-negative least squares problem.

    References
    ----------
    Lawson C., Hanson R.J., (1987) Solving Least Squares Problems, SIAM

    """

    A,b = map(asarray_chkfinite, (A,b))

    if len(A.shape)!=2:
        raise ValueError("expected matrix")
    if len(b.shape)!=1:
        raise ValueError("expected vector")

    m,n = A.shape

    if m != b.shape[0]:
        raise ValueError("incompatible dimensions")

    w   = zeros((n,), dtype=double)
    zz  = zeros((m,), dtype=double)
    index=zeros((n,), dtype=int)

    x,rnorm,mode = _nnls.nnls(A,m,n,b,w,zz,index)
    if mode != 1:
        raise RuntimeError("too many iterations")

    return x, rnorm