1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
"""
Unit tests for optimization routines from optimize.py and tnc.py
Authors:
Ed Schofield, Nov 2005
Andrew Straw, April 2008
To run it in its simplest form::
nosetests test_optimize.py
"""
from numpy.testing import assert_raises, assert_almost_equal, \
assert_equal, assert_, TestCase, run_module_suite
from scipy import optimize
from numpy import array, zeros, float64, dot, log, exp, inf, sin, cos
import numpy as np
from scipy.optimize.tnc import RCSTRINGS, MSG_NONE
import numpy.random
from math import pow
class TestOptimize(TestCase):
""" Test case for a simple constrained entropy maximization problem
(the machine translation example of Berger et al in
Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
"""
def setUp(self):
self.F = array([[1,1,1],[1,1,0],[1,0,1],[1,0,0],[1,0,0]])
self.K = array([1., 0.3, 0.5])
self.startparams = zeros(3, float64)
self.solution = array([0., -0.524869316, 0.487525860])
self.maxiter = 1000
self.funccalls = 0
self.gradcalls = 0
self.trace = []
def func(self, x):
self.funccalls += 1
if self.funccalls > 6000:
raise RuntimeError("too many iterations in optimization routine")
log_pdot = dot(self.F, x)
logZ = log(sum(exp(log_pdot)))
f = logZ - dot(self.K, x)
self.trace.append(x)
return f
def grad(self, x):
self.gradcalls += 1
log_pdot = dot(self.F, x)
logZ = log(sum(exp(log_pdot)))
p = exp(log_pdot - logZ)
return dot(self.F.transpose(), p) - self.K
def test_cg(self):
""" conjugate gradient optimization routine
"""
retval = optimize.fmin_cg(self.func, self.startparams, self.grad, (), \
maxiter=self.maxiter, \
full_output=True, disp=False, retall=False)
(params, fopt, func_calls, grad_calls, warnflag) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "CG: Difference is: " + str(err)
assert_(err < 1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 9, self.funccalls)
assert_(self.gradcalls == 7, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_(np.allclose(self.trace[2:4],
[[0, -0.5, 0.5],
[0, -5.05700028e-01, 4.95985862e-01]],
atol=1e-14, rtol=1e-7), self.trace[2:4])
def test_bfgs(self):
""" Broyden-Fletcher-Goldfarb-Shanno optimization routine
"""
retval = optimize.fmin_bfgs(self.func, self.startparams, self.grad, \
args=(), maxiter=self.maxiter, \
full_output=True, disp=False, retall=False)
(params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "BFGS: Difference is: " + str(err)
assert_(err < 1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 10, self.funccalls)
assert_(self.gradcalls == 8, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_(np.allclose(self.trace[6:8],
[[0, -5.25060743e-01, 4.87748473e-01],
[0, -5.24885582e-01, 4.87530347e-01]],
atol=1e-14, rtol=1e-7), self.trace[6:8])
def test_bfgs_infinite(self):
"""Test corner case where -Inf is the minimum. See #1494."""
func = lambda x: -np.e**-x
fprime = lambda x: -func(x)
x0 = [0]
olderr = np.seterr(over='ignore')
try:
x = optimize.fmin_bfgs(func, x0, fprime, disp=False)
assert_(not np.isfinite(func(x)))
finally:
np.seterr(**olderr)
def test_powell(self):
""" Powell (direction set) optimization routine
"""
retval = optimize.fmin_powell(self.func, self.startparams, \
args=(), maxiter=self.maxiter, \
full_output=True, disp=False, retall=False)
(params, fopt, direc, numiter, func_calls, warnflag) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "Powell: Difference is: " + str(err)
assert_(err < 1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
#
# However, some leeway must be added: the exact evaluation
# count is sensitive to numerical error, and floating-point
# computations are not bit-for-bit reproducible across
# machines, and when using e.g. MKL, data alignment
# etc. affect the rounding error.
#
assert_(self.funccalls <= 116 + 20, self.funccalls)
assert_(self.gradcalls == 0, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_(np.allclose(self.trace[34:39],
[[ 0.72949016, -0.44156936, 0.47100962],
[ 0.72949016, -0.44156936, 0.48052496],
[ 1.45898031, -0.88313872, 0.95153458],
[ 0.72949016, -0.44156936, 0.47576729],
[ 1.72949016, -0.44156936, 0.47576729]],
atol=1e-14, rtol=1e-7), self.trace[34:39])
def test_neldermead(self):
""" Nelder-Mead simplex algorithm
"""
retval = optimize.fmin(self.func, self.startparams, \
args=(), maxiter=self.maxiter, \
full_output=True, disp=False, retall=False)
(params, fopt, numiter, func_calls, warnflag) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "Nelder-Mead: Difference is: " + str(err)
assert_(err < 1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 167, self.funccalls)
assert_(self.gradcalls == 0, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_(np.allclose(self.trace[76:78],
[[0.1928968 , -0.62780447, 0.35166118],
[0.19572515, -0.63648426, 0.35838135]],
atol=1e-14, rtol=1e-7), self.trace[76:78])
def test_ncg(self):
""" line-search Newton conjugate gradient optimization routine
"""
retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
args=(), maxiter=self.maxiter,
full_output=False, disp=False,
retall=False)
params = retval
err = abs(self.func(params) - self.func(self.solution))
#print "NCG: Difference is: " + str(err)
assert_(err < 1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0
#assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
#assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_(np.allclose(self.trace[3:5],
[[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
[-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
atol=1e-6, rtol=1e-7), self.trace[:5])
def test_l_bfgs_b(self):
""" limited-memory bound-constrained BFGS algorithm
"""
retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
self.grad, args=(),
maxfun=self.maxiter)
(params, fopt, d) = retval
err = abs(self.func(params) - self.func(self.solution))
#print "LBFGSB: Difference is: " + str(err)
assert_(err < 1e-6)
# Ensure that function call counts are 'known good'; these are from
# Scipy 0.7.0. Don't allow them to increase.
assert_(self.funccalls == 7, self.funccalls)
assert_(self.gradcalls == 5, self.gradcalls)
# Ensure that the function behaves the same; this is from Scipy 0.7.0
assert_(np.allclose(self.trace[3:5],
[[0. , -0.52489628, 0.48753042],
[0. , -0.52489628, 0.48753042]],
atol=1e-14, rtol=1e-7), self.trace[3:5])
def test_brent(self):
""" brent algorithm
"""
x = optimize.brent(lambda x: (x-1.5)**2-0.8)
err1 = abs(x - 1.5)
x = optimize.brent(lambda x: (x-1.5)**2-0.8, brack = (-3,-2))
err2 = abs(x - 1.5)
x = optimize.brent(lambda x: (x-1.5)**2-0.8, full_output=True)
err3 = abs(x[0] - 1.5)
x = optimize.brent(lambda x: (x-1.5)**2-0.8, brack = (-15,-1,15))
err4 = abs(x - 1.5)
assert_(max((err1,err2,err3,err4)) < 1e-6)
def test_fminbound(self):
"""Test fminbound
"""
x = optimize.fminbound(lambda x: (x - 1.5)**2 - 0.8, 0, 1)
assert_(abs(x - 1) < 1e-5)
x = optimize.fminbound(lambda x: (x - 1.5)**2 - 0.8, 1, 5)
assert_(abs(x - 1.5) < 1e-6)
x = optimize.fminbound(lambda x: (x - 1.5)**2 - 0.8,
numpy.array([1]), numpy.array([5]))
assert_(abs(x - 1.5) < 1e-6)
assert_raises(ValueError,
optimize.fminbound, lambda x: (x - 1.5)**2 - 0.8, 5, 1)
def test_fminbound_scalar(self):
assert_raises(ValueError,
optimize.fminbound, lambda x: (x - 1.5)**2 - 0.8,
np.zeros(2), 1)
assert_almost_equal(
optimize.fminbound(lambda x: (x - 1.5)**2 - 0.8, 1, np.array(5)),
1.5)
class TestTnc(TestCase):
"""TNC non-linear optimization.
These tests are taken from Prof. K. Schittkowski's test examples
for constrained non-linear programming.
http://www.uni-bayreuth.de/departments/math/~kschittkowski/home.htm
"""
tests = []
def setUp(self):
def test1fg(x):
f = 100.0*pow((x[1]-pow(x[0],2)),2)+pow(1.0-x[0],2)
dif = [0,0]
dif[1] = 200.0*(x[1]-pow(x[0],2))
dif[0] = -2.0*(x[0]*(dif[1]-1.0)+1.0)
return f, dif
self.tests.append((test1fg, [-2,1], ([-inf,None],[-1.5,None]),
[1,1]))
def test2fg(x):
f = 100.0*pow((x[1]-pow(x[0],2)),2)+pow(1.0-x[0],2)
dif = [0,0]
dif[1] = 200.0*(x[1]-pow(x[0],2))
dif[0] = -2.0*(x[0]*(dif[1]-1.0)+1.0)
return f, dif
self.tests.append((test2fg, [-2,1], [(-inf,None),(1.5,None)],
[-1.2210262419616387,1.5]))
def test3fg(x):
f = x[1]+pow(x[1]-x[0],2)*1.0e-5
dif = [0,0]
dif[0] = -2.0*(x[1]-x[0])*1.0e-5
dif[1] = 1.0-dif[0]
return f, dif
self.tests.append((test3fg, [10,1], [(-inf,None),(0.0, None)],
[0,0]))
def test4fg(x):
f = pow(x[0]+1.0,3)/3.0+x[1]
dif = [0,0]
dif[0] = pow(x[0]+1.0,2)
dif[1] = 1.0
return f, dif
self.tests.append((test4fg, [1.125,0.125], [(1, None),(0, None)],
[1,0]))
def test5fg(x):
f = sin(x[0]+x[1])+pow(x[0]-x[1],2)-1.5*x[0]+2.5*x[1]+1.0
dif = [0,0]
v1 = cos(x[0]+x[1])
v2 = 2.0*(x[0]-x[1])
dif[0] = v1+v2-1.5
dif[1] = v1-v2+2.5
return f, dif
self.tests.append((test5fg, [0,0], [(-1.5, 4),(-3,3)],
[-0.54719755119659763, -1.5471975511965976]))
def test38fg(x):
f = (100.0*pow(x[1]-pow(x[0],2),2) + \
pow(1.0-x[0],2)+90.0*pow(x[3]-pow(x[2],2),2) + \
pow(1.0-x[2],2)+10.1*(pow(x[1]-1.0,2)+pow(x[3]-1.0,2)) + \
19.8*(x[1]-1.0)*(x[3]-1.0))*1.0e-5
dif = [0,0,0,0]
dif[0] = (-400.0*x[0]*(x[1]-pow(x[0],2))-2.0*(1.0-x[0]))*1.0e-5
dif[1] = (200.0*(x[1]-pow(x[0],2))+20.2 \
*(x[1]-1.0)+19.8*(x[3]-1.0))*1.0e-5
dif[2] = (-360.0*x[2]*(x[3]-pow(x[2],2))-2.0\
*(1.0-x[2]))*1.0e-5
dif[3] = (180.0*(x[3]-pow(x[2],2))+20.2\
*(x[3]-1.0)+19.8*(x[1]-1.0))*1.0e-5
return f, dif
self.tests.append((test38fg, array([-3,-1,-3,-1]), [(-10,10)]*4, [1]*4))
def test45fg(x):
f = 2.0-x[0]*x[1]*x[2]*x[3]*x[4]/120.0
dif = [0]*5
dif[0] = -x[1]*x[2]*x[3]*x[4]/120.0
dif[1] = -x[0]*x[2]*x[3]*x[4]/120.0
dif[2] = -x[0]*x[1]*x[3]*x[4]/120.0
dif[3] = -x[0]*x[1]*x[2]*x[4]/120.0
dif[4] = -x[0]*x[1]*x[2]*x[3]/120.0
return f, dif
self.tests.append((test45fg, [2]*5, [(0,1),(0,2),(0,3),(0,4),(0,5)],
[1,2,3,4,5]))
def test_tnc(self):
for fg, x, bounds, xopt in self.tests:
x, nf, rc = optimize.fmin_tnc(fg, x, bounds=bounds,
messages=MSG_NONE, maxfun=200)
err = "Failed optimization of %s.\n" \
"After %d function evaluations, TNC returned: %s.""" % \
(fg.__name__, nf, RCSTRINGS[rc])
ef = abs(fg(xopt)[0] - fg(x)[0])
if ef > 1e-8:
raise err
class TestRosen(TestCase):
def test_hess(self):
"""Compare rosen_hess(x) times p with rosen_hess_prod(x,p) (ticket #1248)"""
x = array([3, 4, 5])
p = array([2, 2, 2])
hp = optimize.rosen_hess_prod(x, p)
dothp = np.dot(optimize.rosen_hess(x), p)
assert_equal(hp, dothp)
if __name__ == "__main__":
run_module_suite()
|