File: zeros.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (440 lines) | stat: -rw-r--r-- 16,007 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

import warnings

import _zeros
from numpy import finfo

_iter = 100
_xtol = 1e-12
# not actually used at the moment
_rtol = finfo(float).eps * 2

__all__ = ['newton', 'bisect', 'ridder', 'brentq', 'brenth']

CONVERGED = 'converged'
SIGNERR = 'sign error'
CONVERR = 'convergence error'
flag_map = {0 : CONVERGED, -1 : SIGNERR, -2 : CONVERR}


class RootResults(object):
    def __init__(self, root, iterations, function_calls, flag):
        self.root = root
        self.iterations = iterations
        self.function_calls = function_calls
        self.converged = flag == 0
        try:
            self.flag = flag_map[flag]
        except KeyError:
            self.flag = 'unknown error %d' % (flag,)


def results_c(full_output, r):
    if full_output:
        x, funcalls, iterations, flag = r
        results = RootResults(root=x,
                              iterations=iterations,
                              function_calls=funcalls,
                              flag=flag)
        return x, results
    else:
        return r


# Newton-Raphson method
def newton(func, x0, fprime=None, args=(), tol=1.48e-8, maxiter=50):
    """
    Find a zero using the Newton-Raphson or secant method.

    Find a zero of the function `func` given a nearby starting point `x0`.
    The Newton-Raphson method is used if the derivative `fprime` of `func`
    is provided, otherwise the secant method is used.

    Parameters
    ----------
    func : function
        The function whose zero is wanted. It must be a function of a
        single variable of the form f(x,a,b,c...), where a,b,c... are extra
        arguments that can be passed in the `args` parameter.
    x0 : float
        An initial estimate of the zero that should be somewhere near the
        actual zero.
    fprime : function, optional
        The derivative of the function when available and convenient. If it
        is None (default), then the secant method is used.
    args : tuple, optional
        Extra arguments to be used in the function call.
    tol : float, optional
        The allowable error of the zero value.
    maxiter : int, optional
        Maximum number of iterations.

    Returns
    -------
    zero : float
        Estimated location where function is zero.

    See Also
    --------
    brentq, brenth, ridder, bisect : find zeroes in one dimension.
    fsolve : find zeroes in n dimensions.

    Notes
    -----
    The convergence rate of the Newton-Raphson method is quadratic while
    that of the secant method is somewhat less. This means that if the
    function is  well behaved the actual error in the estimated zero is
    approximately the square of the requested tolerance up to roundoff
    error. However, the stopping criterion used here is the step size and
    there is no guarantee that a zero has been found. Consequently the
    result should be verified. Safer algorithms are brentq, brenth, ridder,
    and bisect, but they all require that the root first be bracketed in an
    interval where the function changes sign. The brentq algorithm is
    recommended for general use in one dimensional problems when such an
    interval has been found.

    """
    if fprime is not None:
        # Newton-Rapheson method
        # Multiply by 1.0 to convert to floating point.  We don't use float(x0)
        # so it still works if x0 is complex.
        p0 = 1.0 * x0
        for iter in range(maxiter):
            myargs = (p0,) + args
            fder = fprime(*myargs)
            if fder == 0:
                msg = "derivative was zero."
                warnings.warn(msg, RuntimeWarning)
                return p0
            p = p0 - func(*myargs) / fder
            if abs(p - p0) < tol:
                return p
            p0 = p
    else:
        # Secant method
        p0 = x0
        if x0 >= 0:
            p1 = x0*(1 + 1e-4) + 1e-4
        else:
            p1 = x0*(1 + 1e-4) - 1e-4
        q0 = func(*((p0,) + args))
        q1 = func(*((p1,) + args))
        for iter in range(maxiter):
            if q1 == q0:
                if p1 != p0:
                    msg = "Tolerance of %s reached" % (p1 - p0)
                    warnings.warn(msg, RuntimeWarning)
                return (p1 + p0)/2.0
            else:
                p = p1 - q1*(p1 - p0)/(q1 - q0)
            if abs(p - p1) < tol:
                return p
            p0 = p1
            q0 = q1
            p1 = p
            q1 = func(*((p1,) + args))
    msg = "Failed to converge after %d iterations, value is %s" % (maxiter, p)
    raise RuntimeError(msg)


def bisect(f, a, b, args=(),
           xtol=_xtol, rtol=_rtol, maxiter=_iter,
           full_output=False, disp=True):
    """Find root of f in [a,b].

    Basic bisection routine to find a zero of the function f between the
    arguments a and b. f(a) and f(b) can not have the same signs. Slow but
    sure.

    Parameters
    ----------
    f : function
        Python function returning a number.  f must be continuous, and f(a) and
        f(b) must have opposite signs.
    a : number
        One end of the bracketing interval [a,b].
    b : number
        The other end of the bracketing interval [a,b].
    xtol : number, optional
        The routine converges when a root is known to lie within xtol of the
        value return. Should be >= 0.  The routine modifies this to take into
        account the relative precision of doubles.
    maxiter : number, optional
        if convergence is not achieved in maxiter iterations, and error is
        raised.  Must be >= 0.
    args : tuple, optional
        containing extra arguments for the function `f`.
        `f` is called by ``apply(f, (x)+args)``.
    full_output : bool, optional
        If `full_output` is False, the root is returned.  If `full_output` is
        True, the return value is ``(x, r)``, where `x` is the root, and `r` is
        a RootResults object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.

    Returns
    -------
    x0 : float
        Zero of `f` between `a` and `b`.
    r : RootResults (present if ``full_output = True``)
        Object containing information about the convergence.  In particular,
        ``r.converged`` is True if the routine converged.

    See Also
    --------
    brentq, brenth, bisect, newton : one-dimensional root-finding
    fixed_point : scalar fixed-point finder
    fsolve : n-dimensional root-finding

    """
    if type(args) != type(()) :
        args = (args,)
    r = _zeros._bisect(f,a,b,xtol,maxiter,args,full_output,disp)
    return results_c(full_output, r)


def ridder(f, a, b, args=(),
           xtol=_xtol, rtol=_rtol, maxiter=_iter,
           full_output=False, disp=True):
    """
    Find a root of a function in an interval.

    Parameters
    ----------
    f : function
        Python function returning a number.  f must be continuous, and f(a) and
        f(b) must have opposite signs.
    a : number
        One end of the bracketing interval [a,b].
    b : number
        The other end of the bracketing interval [a,b].
    xtol : number, optional
        The routine converges when a root is known to lie within xtol of the
        value return. Should be >= 0.  The routine modifies this to take into
        account the relative precision of doubles.
    maxiter : number, optional
        if convergence is not achieved in maxiter iterations, and error is
        raised.  Must be >= 0.
    args : tuple, optional
        containing extra arguments for the function `f`.
        `f` is called by ``apply(f, (x)+args)``.
    full_output : bool, optional
        If `full_output` is False, the root is returned.  If `full_output` is
        True, the return value is ``(x, r)``, where `x` is the root, and `r` is
        a RootResults object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.

    Returns
    -------
    x0 : float
        Zero of `f` between `a` and `b`.
    r : RootResults (present if ``full_output = True``)
        Object containing information about the convergence.
        In particular, ``r.converged`` is True if the routine converged.

    See Also
    --------
    brentq, brenth, bisect, newton : one-dimensional root-finding
    fixed_point : scalar fixed-point finder

    Notes
    -----
    Uses [Ridders1979]_ method to find a zero of the function `f` between the
    arguments `a` and `b`. Ridders' method is faster than bisection, but not
    generally as fast as the Brent rountines. [Ridders1979]_ provides the
    classic description and source of the algorithm. A description can also be
    found in any recent edition of Numerical Recipes.

    The routine used here diverges slightly from standard presentations in
    order to be a bit more careful of tolerance.

    References
    ----------
    .. [Ridders1979]
       Ridders, C. F. J. "A New Algorithm for Computing a
       Single Root of a Real Continuous Function."
       IEEE Trans. Circuits Systems 26, 979-980, 1979.

    """
    if type(args) != type(()) :
        args = (args,)
    r = _zeros._ridder(f,a,b,xtol,maxiter,args,full_output,disp)
    return results_c(full_output, r)


def brentq(f, a, b, args=(),
           xtol=_xtol, rtol=_rtol, maxiter=_iter,
           full_output=False, disp=True):
    """
    Find a root of a function in given interval.

    Return float, a zero of `f` between `a` and `b`.  `f` must be a continuous
    function, and [a,b] must be a sign changing interval.

    Description:
    Uses the classic Brent (1973) method to find a zero of the function `f` on
    the sign changing interval [a , b].  Generally considered the best of the
    rootfinding routines here.  It is a safe version of the secant method that
    uses inverse quadratic extrapolation.  Brent's method combines root
    bracketing, interval bisection, and inverse quadratic interpolation.  It is
    sometimes known as the van Wijngaarden-Deker-Brent method.  Brent (1973)
    claims convergence is guaranteed for functions computable within [a,b].

    [Brent1973]_ provides the classic description of the algorithm.  Another
    description can be found in a recent edition of Numerical Recipes, including
    [PressEtal1992]_.  Another description is at
    http://mathworld.wolfram.com/BrentsMethod.html.  It should be easy to
    understand the algorithm just by reading our code.  Our code diverges a bit
    from standard presentations: we choose a different formula for the
    extrapolation step.

    Parameters
    ----------
    f : function
        Python function returning a number.  f must be continuous, and f(a) and
        f(b) must have opposite signs.
    a : number
        One end of the bracketing interval [a,b].
    b : number
        The other end of the bracketing interval [a,b].
    xtol : number, optional
        The routine converges when a root is known to lie within xtol of the
        value return. Should be >= 0.  The routine modifies this to take into
        account the relative precision of doubles.
    maxiter : number, optional
        if convergence is not achieved in maxiter iterations, and error is
        raised.  Must be >= 0.
    args : tuple, optional
        containing extra arguments for the function `f`.
        `f` is called by ``apply(f, (x)+args)``.
    full_output : bool, optional
        If `full_output` is False, the root is returned.  If `full_output` is
        True, the return value is ``(x, r)``, where `x` is the root, and `r` is
        a RootResults object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.

    Returns
    -------
    x0 : float
        Zero of `f` between `a` and `b`.
    r : RootResults (present if ``full_output = True``)
        Object containing information about the convergence.  In particular,
        ``r.converged`` is True if the routine converged.

    See Also
    --------
    multivariate local optimizers
      `fmin`, `fmin_powell`, `fmin_cg`, `fmin_bfgs`, `fmin_ncg`
    nonlinear least squares minimizer
      `leastsq`
    constrained multivariate optimizers
      `fmin_l_bfgs_b`, `fmin_tnc`, `fmin_cobyla`
    global optimizers
      `anneal`, `brute`
    local scalar minimizers
      `fminbound`, `brent`, `golden`, `bracket`
    n-dimensional root-finding
      `fsolve`
    one-dimensional root-finding
      `brentq`, `brenth`, `ridder`, `bisect`, `newton`
    scalar fixed-point finder
      `fixed_point`

    Notes
    -----
    `f` must be continuous.  f(a) and f(b) must have opposite signs.


    References
    ----------
    .. [Brent1973]
       Brent, R. P.,
       *Algorithms for Minimization Without Derivatives*.
       Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4.

    .. [PressEtal1992]
       Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
       *Numerical Recipes in FORTRAN: The Art of Scientific Computing*, 2nd ed.
       Cambridge, England: Cambridge University Press, pp. 352-355, 1992.
       Section 9.3:  "Van Wijngaarden-Dekker-Brent Method."

    """
    if type(args) != type(()) :
        args = (args,)
    r = _zeros._brentq(f,a,b,xtol,maxiter,args,full_output,disp)
    return results_c(full_output, r)


def brenth(f, a, b, args=(),
           xtol=_xtol, rtol=_rtol, maxiter=_iter,
           full_output=False, disp=True):
    """Find root of f in [a,b].

    A variation on the classic Brent routine to find a zero of the function f
    between the arguments a and b that uses hyperbolic extrapolation instead of
    inverse quadratic extrapolation. There was a paper back in the 1980's ...
    f(a) and f(b) can not have the same signs. Generally on a par with the
    brent routine, but not as heavily tested.  It is a safe version of the
    secant method that uses hyperbolic extrapolation. The version here is by
    Chuck Harris.

    Parameters
    ----------
    f : function
        Python function returning a number.  f must be continuous, and f(a) and
        f(b) must have opposite signs.
    a : number
        One end of the bracketing interval [a,b].
    b : number
        The other end of the bracketing interval [a,b].
    xtol : number, optional
        The routine converges when a root is known to lie within xtol of the
        value return. Should be >= 0.  The routine modifies this to take into
        account the relative precision of doubles.
    maxiter : number, optional
        if convergence is not achieved in maxiter iterations, and error is
        raised.  Must be >= 0.
    args : tuple, optional
        containing extra arguments for the function `f`.
        `f` is called by ``apply(f, (x)+args)``.
    full_output : bool, optional
        If `full_output` is False, the root is returned.  If `full_output` is
        True, the return value is ``(x, r)``, where `x` is the root, and `r` is
        a RootResults object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.

    Returns
    -------
    x0 : float
        Zero of `f` between `a` and `b`.
    r : RootResults (present if ``full_output = True``)
        Object containing information about the convergence.  In particular,
        ``r.converged`` is True if the routine converged.

    See Also
    --------
    fmin, fmin_powell, fmin_cg,
           fmin_bfgs, fmin_ncg : multivariate local optimizers

    leastsq : nonlinear least squares minimizer

    fmin_l_bfgs_b, fmin_tnc, fmin_cobyla : constrained multivariate optimizers

    anneal, brute : global optimizers

    fminbound, brent, golden, bracket : local scalar minimizers

    fsolve : n-dimensional root-finding

    brentq, brenth, ridder, bisect, newton : one-dimensional root-finding

    fixed_point : scalar fixed-point finder

    """
    if type(args) != type(()) :
        args = (args,)
    r = _zeros._brenth(f,a, b, xtol, maxiter, args, full_output, disp)
    return results_c(full_output, r)