1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# April 4, 2011
import numpy as np
from numpy.testing import TestCase, run_module_suite, assert_equal, \
assert_array_almost_equal, assert_array_equal, \
assert_allclose
from scipy.signal import dlsim, dstep, dimpulse, tf2zpk
class TestDLTI(TestCase):
def test_dlsim(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Create an input matrix with inputs down the columns (3 cols) and its
# respective time input vector
u = np.hstack((np.asmatrix(np.linspace(0, 4.0, num=5)).transpose(),
0.01 * np.ones((5, 1)),
-0.002 * np.ones((5, 1))))
t_in = np.linspace(0, 2.0, num=5)
# Define the known result
yout_truth = np.asmatrix([-0.001,
-0.00073,
0.039446,
0.0915387,
0.13195948]).transpose()
xout_truth = np.asarray([[0, 0],
[0.0012, 0.0005],
[0.40233, 0.00071],
[1.163368, -0.079327],
[2.2402985, -0.3035679]])
tout, yout, xout = dlsim((a, b, c, d, dt), u, t_in)
assert_array_almost_equal(yout_truth, yout)
assert_array_almost_equal(xout_truth, xout)
assert_array_almost_equal(t_in, tout)
# Interpolated control - inputs should have different time steps
# than the discrete model uses internally
u_sparse = u[[0, 4], :]
t_sparse = np.asarray([0.0, 2.0])
tout, yout, xout = dlsim((a, b, c, d, dt), u_sparse, t_sparse)
assert_array_almost_equal(yout_truth, yout)
assert_array_almost_equal(xout_truth, xout)
assert_equal(len(tout), yout.shape[0])
# Transfer functions (assume dt = 0.5)
num = np.asarray([1.0, -0.1])
den = np.asarray([0.3, 1.0, 0.2])
yout_truth = np.asmatrix([0.0,
0.0,
3.33333333333333,
-4.77777777777778,
23.0370370370370]).transpose()
# Assume use of the first column of the control input built earlier
tout, yout = dlsim((num, den, 0.5), u[:, 0], t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
# Retest the same with a 1-D input vector
uflat = np.asarray(u[:, 0])
uflat = uflat.reshape((5,))
tout, yout = dlsim((num, den, 0.5), uflat, t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
# zeros-poles-gain representation
zd = np.array([0.5, -0.5])
pd = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
k = 1.0
yout_truth = np.asmatrix([0.0, 1.0, 2.0, 2.25, 2.5]).transpose()
tout, yout = dlsim((zd, pd, k, 0.5), u[:, 0], t_in)
assert_array_almost_equal(yout, yout_truth)
assert_array_almost_equal(t_in, tout)
def test_dstep(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Because b.shape[1] == 3, dstep should result in a tuple of three
# result vectors
yout_step_truth = (np.asarray([0.0, 0.04, 0.052, 0.0404, 0.00956,
-0.036324, -0.093318, -0.15782348,
-0.226628324, -0.2969374948]),
np.asarray([-0.1, -0.075, -0.058, -0.04815,
-0.04453, -0.0461895, -0.0521812,
-0.061588875, -0.073549579,
-0.08727047595]),
np.asarray([0.0, -0.01, -0.013, -0.0101, -0.00239,
0.009081, 0.0233295, 0.03945587,
0.056657081, 0.0742343737]))
tout, yout = dstep((a, b, c, d, dt), n=10)
assert_equal(len(yout), 3)
for i in range(0, len(yout)):
assert_equal(yout[i].shape[0], 10)
assert_array_almost_equal(yout[i].flatten(), yout_step_truth[i])
# Check that the other two inputs (tf, zpk) will work as well
tfin = ([1.0], [1.0, 1.0], 0.5)
yout_tfstep = np.asarray([0.0, 1.0, 0.0])
tout, yout = dstep(tfin, n=3)
assert_equal(len(yout), 1)
assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
tout, yout = dstep(zpkin, n=3)
assert_equal(len(yout), 1)
assert_array_almost_equal(yout[0].flatten(), yout_tfstep)
def test_dimpulse(self):
a = np.asarray([[0.9, 0.1], [-0.2, 0.9]])
b = np.asarray([[0.4, 0.1, -0.1], [0.0, 0.05, 0.0]])
c = np.asarray([[0.1, 0.3]])
d = np.asarray([[0.0, -0.1, 0.0]])
dt = 0.5
# Because b.shape[1] == 3, dimpulse should result in a tuple of three
# result vectors
yout_imp_truth = (np.asarray([0.0, 0.04, 0.012, -0.0116, -0.03084,
-0.045884, -0.056994, -0.06450548,
-0.068804844, -0.0703091708]),
np.asarray([-0.1, 0.025, 0.017, 0.00985, 0.00362,
-0.0016595, -0.0059917, -0.009407675,
-0.011960704, -0.01372089695]),
np.asarray([0.0, -0.01, -0.003, 0.0029, 0.00771,
0.011471, 0.0142485, 0.01612637,
0.017201211, 0.0175772927]))
tout, yout = dimpulse((a, b, c, d, dt), n=10)
assert_equal(len(yout), 3)
for i in range(0, len(yout)):
assert_equal(yout[i].shape[0], 10)
assert_array_almost_equal(yout[i].flatten(), yout_imp_truth[i])
# Check that the other two inputs (tf, zpk) will work as well
tfin = ([1.0], [1.0, 1.0], 0.5)
yout_tfimpulse = np.asarray([0.0, 1.0, -1.0])
tout, yout = dimpulse(tfin, n=3)
assert_equal(len(yout), 1)
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
zpkin = tf2zpk(tfin[0], tfin[1]) + (0.5,)
tout, yout = dimpulse(zpkin, n=3)
assert_equal(len(yout), 1)
assert_array_almost_equal(yout[0].flatten(), yout_tfimpulse)
def test_dlsim_trivial(self):
a = np.array([[0.0]])
b = np.array([[0.0]])
c = np.array([[0.0]])
d = np.array([[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u)
assert_array_equal(tout, np.arange(float(n)))
assert_array_equal(yout, np.zeros((n, 1)))
assert_array_equal(xout, np.zeros((n, 1)))
def test_dlsim_simple1d(self):
a = np.array([[0.5]])
b = np.array([[0.0]])
c = np.array([[1.0]])
d = np.array([[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
assert_array_equal(tout, np.arange(float(n)))
expected = (0.5 ** np.arange(float(n))).reshape(-1, 1)
assert_array_equal(yout, expected)
assert_array_equal(xout, expected)
def test_dlsim_simple2d(self):
lambda1 = 0.5
lambda2 = 0.25
a = np.array([[lambda1, 0.0],
[0.0, lambda2]])
b = np.array([[0.0],
[0.0]])
c = np.array([[1.0, 0.0],
[0.0, 1.0]])
d = np.array([[0.0],
[0.0]])
n = 5
u = np.zeros(n).reshape(-1, 1)
tout, yout, xout = dlsim((a, b, c, d, 1), u, x0=1)
assert_array_equal(tout, np.arange(float(n)))
# The analytical solution:
expected = (np.array([lambda1, lambda2]) **
np.arange(float(n)).reshape(-1, 1))
assert_array_equal(yout, expected)
assert_array_equal(xout, expected)
def test_more_step_and_impulse(self):
lambda1 = 0.5
lambda2 = 0.75
a = np.array([[lambda1, 0.0],
[0.0, lambda2]])
b = np.array([[1.0, 0.0],
[0.0, 1.0]])
c = np.array([[1.0, 1.0]])
d = np.array([[0.0, 0.0]])
n = 10
# Check a step response.
ts, ys = dstep((a, b, c, d, 1), n=n)
# Create the exact step response.
stp0 = (1.0 / (1 - lambda1)) * (1.0 - lambda1 ** np.arange(n))
stp1 = (1.0 / (1 - lambda2)) * (1.0 - lambda2 ** np.arange(n))
assert_allclose(ys[0][:, 0], stp0)
assert_allclose(ys[1][:, 0], stp1)
# Check an impulse response with an initial condition.
x0 = np.array([1.0, 1.0])
ti, yi = dimpulse((a, b, c, d, 1), n=n, x0=x0)
# Create the exact impulse response.
imp = (np.array([lambda1, lambda2]) **
np.arange(-1, n + 1).reshape(-1, 1))
imp[0, :] = 0.0
# Analytical solution to impulse response
y0 = imp[:n, 0] + np.dot(imp[1:n + 1, :], x0)
y1 = imp[:n, 1] + np.dot(imp[1:n + 1, :], x0)
assert_allclose(yi[0][:, 0], y0)
assert_allclose(yi[1][:, 0], y1)
if __name__ == "__main__":
run_module_suite()
|