File: wavelets.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (248 lines) | stat: -rw-r--r-- 7,148 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
from numpy.dual import eig
from scipy.misc import comb
from scipy import linspace, pi, exp

__all__ = ['daub', 'qmf', 'cascade', 'morlet']


def daub(p):
    """
    The coefficients for the FIR low-pass filter producing Daubechies wavelets.

    p>=1 gives the order of the zero at f=1/2.
    There are 2p filter coefficients.

    Parameters
    ----------
    p : int
        Order of the zero at f=1/2, can have values from 1 to 34.

    """
    sqrt = np.sqrt
    if p < 1:
        raise ValueError("p must be at least 1.")
    if p == 1:
        c = 1 / sqrt(2)
        return np.array([c, c])
    elif p == 2:
        f = sqrt(2) / 8
        c = sqrt(3)
        return f * np.array([1 + c, 3 + c, 3 - c, 1 - c])
    elif p == 3:
        tmp = 12 * sqrt(10)
        z1 = 1.5 + sqrt(15 + tmp) / 6 - 1j * (sqrt(15) + sqrt(tmp - 15)) / 6
        z1c = np.conj(z1)
        f = sqrt(2) / 8
        d0 = np.real((1 - z1) * (1 - z1c))
        a0 = np.real(z1 * z1c)
        a1 = 2 * np.real(z1)
        return f / d0 * np.array([a0, 3 * a0 - a1, 3 * a0 - 3 * a1 + 1,
                                  a0 - 3 * a1 + 3, 3 - a1, 1])
    elif p < 35:
        # construct polynomial and factor it
        if p < 35:
            P = [comb(p - 1 + k, k, exact=1) for k in range(p)][::-1]
            yj = np.roots(P)
        else:  # try different polynomial --- needs work
            P = [comb(p - 1 + k, k, exact=1) / 4.0 ** k
                 for k in range(p)][::-1]
            yj = np.roots(P) / 4
        # for each root, compute two z roots, select the one with |z|>1
        # Build up final polynomial
        c = np.poly1d([1, 1]) ** p
        q = np.poly1d([1])
        for k in range(p - 1):
            yval = yj[k]
            part = 2 * sqrt(yval * (yval - 1))
            const = 1 - 2 * yval
            z1 = const + part
            if (abs(z1)) < 1:
                z1 = const - part
            q = q * [1, -z1]

        q = c * np.real(q)
        # Normalize result
        q = q / np.sum(q) * sqrt(2)
        return q.c[::-1]
    else:
        raise ValueError("Polynomial factorization does not work "
              "well for p too large.")


def qmf(hk):
    """Return high-pass qmf filter from low-pass
    """
    N = len(hk) - 1
    asgn = [{0: 1, 1: -1}[k % 2] for k in range(N + 1)]
    return hk[::-1] * np.array(asgn)


def wavedec(amn, hk):
    gk = qmf(hk)
    return NotImplemented


def cascade(hk, J=7):
    """
    Return (x, phi, psi) at dyadic points K/2**J from filter coefficients.

    Parameters
    ----------
    hk :
        Coefficients of low-pass filter.
    J : int. optional
        Values will be computed at grid points ``K/2**J``.

    Returns
    -------
    x :
        The dyadic points K/2**J for ``K=0...N * (2**J)-1`` where
        ``len(hk) = len(gk) = N+1``
    phi :
        The scaling function ``phi(x)`` at `x`:

                     N
          phi(x) = sum   hk * phi(2x-k)
                     k=0

    psi :
        The wavelet function ``psi(x)`` at `x`:

                     N
          phi(x) = sum   gk * phi(2x-k)
                     k=0

        `psi` is only returned if `gk` is not None.

    Notes
    -----
    The algorithm uses the vector cascade algorithm described by Strang and
    Nguyen in "Wavelets and Filter Banks".  It builds a dictionary of values
    and slices for quick reuse.  Then inserts vectors into final vector at the
    end.

    """

    N = len(hk) - 1

    if (J > 30 - np.log2(N + 1)):
        raise ValueError("Too many levels.")
    if (J < 1):
        raise ValueError("Too few levels.")

    # construct matrices needed
    nn, kk = np.ogrid[:N, :N]
    s2 = np.sqrt(2)
    # append a zero so that take works
    thk = np.r_[hk, 0]
    gk = qmf(hk)
    tgk = np.r_[gk, 0]

    indx1 = np.clip(2 * nn - kk, -1, N + 1)
    indx2 = np.clip(2 * nn - kk + 1, -1, N + 1)
    m = np.zeros((2, 2, N, N), 'd')
    m[0, 0] = np.take(thk, indx1, 0)
    m[0, 1] = np.take(thk, indx2, 0)
    m[1, 0] = np.take(tgk, indx1, 0)
    m[1, 1] = np.take(tgk, indx2, 0)
    m *= s2

    # construct the grid of points
    x = np.arange(0, N * (1 << J), dtype=np.float) / (1 << J)
    phi = 0 * x

    psi = 0 * x

    # find phi0, and phi1
    lam, v = eig(m[0, 0])
    ind = np.argmin(np.absolute(lam - 1))
    # a dictionary with a binary representation of the
    #   evaluation points x < 1 -- i.e. position is 0.xxxx
    v = np.real(v[:, ind])
    # need scaling function to integrate to 1 so find
    #  eigenvector normalized to sum(v,axis=0)=1
    sm = np.sum(v)
    if sm < 0:  # need scaling function to integrate to 1
        v = -v
        sm = -sm
    bitdic = {}
    bitdic['0'] = v / sm
    bitdic['1'] = np.dot(m[0, 1], bitdic['0'])
    step = 1 << J
    phi[::step] = bitdic['0']
    phi[(1 << (J - 1))::step] = bitdic['1']
    psi[::step] = np.dot(m[1, 0], bitdic['0'])
    psi[(1 << (J - 1))::step] = np.dot(m[1, 1], bitdic['0'])
    # descend down the levels inserting more and more values
    #  into bitdic -- store the values in the correct location once we
    #  have computed them -- stored in the dictionary
    #  for quicker use later.
    prevkeys = ['1']
    for level in range(2, J + 1):
        newkeys = ['%d%s' % (xx, yy) for xx in [0, 1] for yy in prevkeys]
        fac = 1 << (J - level)
        for key in newkeys:
            # convert key to number
            num = 0
            for pos in range(level):
                if key[pos] == '1':
                    num += (1 << (level - 1 - pos))
            pastphi = bitdic[key[1:]]
            ii = int(key[0])
            temp = np.dot(m[0, ii], pastphi)
            bitdic[key] = temp
            phi[num * fac::step] = temp
            psi[num * fac::step] = np.dot(m[1, ii], pastphi)
        prevkeys = newkeys

    return x, phi, psi


def morlet(M, w=5.0, s=1.0, complete=True):
    """
    Complex Morlet wavelet.

    Parameters
    ----------
    M : int
        Length of the wavelet.
    w : float
        Omega0
    s : float
        Scaling factor, windowed from -s*2*pi to +s*2*pi.
    complete : bool
        Whether to use the complete or the standard version.

    Notes
    -----
    The standard version:
        pi**-0.25 * exp(1j*w*x) * exp(-0.5*(x**2))

        This commonly used wavelet is often referred to simply as the
        Morlet wavelet.  Note that, this simplified version can cause
        admissibility problems at low values of w.

    The complete version:
        pi**-0.25 * (exp(1j*w*x) - exp(-0.5*(w**2))) * exp(-0.5*(x**2))

        The complete version of the Morlet wavelet, with a correction
        term to improve admissibility. For w greater than 5, the
        correction term is negligible.

    Note that the energy of the return wavelet is not normalised
    according to s.

    The fundamental frequency of this wavelet in Hz is given
    by f = 2*s*w*r / M where r is the sampling rate.

    """
    x = linspace(-s * 2 * pi, s * 2 * pi, M)
    output = exp(1j * w * x)

    if complete:
        output -= exp(-0.5 * (w ** 2))

    output *= exp(-0.5 * (x ** 2)) * pi ** (-0.25)

    return output