File: bench_sparse.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (320 lines) | stat: -rw-r--r-- 11,808 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
"""general tests and simple benchmarks for the sparse module"""

import time

import numpy
from numpy import ones, array, asarray, empty

from numpy.testing import *

from scipy import sparse
from scipy.sparse import csr_matrix, coo_matrix, dia_matrix, lil_matrix, \
        dok_matrix


def random_sparse(m,n,nnz_per_row):
    rows = numpy.arange(m).repeat(nnz_per_row)
    cols = numpy.random.random_integers(low=0,high=n-1,size=nnz_per_row*m)
    vals = numpy.random.random_sample(m*nnz_per_row)
    return coo_matrix((vals,(rows,cols)),(m,n)).tocsr()


#TODO move this to a matrix gallery and add unittests
def poisson2d(N,dtype='d',format=None):
    """
    Return a sparse matrix for the 2d poisson problem
    with standard 5-point finite difference stencil on a
    square N-by-N grid.
    """
    if N == 1:
        diags   = asarray( [[4]],dtype=dtype)
        return dia_matrix((diags,[0]), shape=(1,1)).asformat(format)

    offsets = array([0,-N,N,-1,1])

    diags = empty((5,N**2),dtype=dtype)

    diags[0]  =  4 #main diagonal
    diags[1:] = -1 #all offdiagonals

    diags[3,N-1::N] = 0  #first lower diagonal
    diags[4,N::N]   = 0  #first upper diagonal

    return dia_matrix((diags,offsets),shape=(N**2,N**2)).asformat(format)

class BenchmarkSparse(TestCase):
    """Simple benchmarks for sparse matrix module"""

    def bench_arithmetic(self):
        matrices = []
        #matrices.append( ('A','Identity', sparse.identity(500**2,format='csr')) )
        matrices.append( ('A','Poisson5pt', poisson2d(250,format='csr'))  )
        matrices.append( ('B','Poisson5pt^2', poisson2d(250,format='csr')**2)  )

        print
        print '                 Sparse Matrix Arithmetic'
        print '===================================================================='
        print ' var |     name       |         shape        |   dtype   |    nnz   '
        print '--------------------------------------------------------------------'
        fmt = '  %1s  | %14s | %20s | %9s | %8d '

        for var,name,mat in matrices:
            name  = name.center(14)
            shape = ("%s" % (mat.shape,)).center(20)
            dtype = mat.dtype.name.center(9)
            print fmt % (var,name,shape,dtype,mat.nnz)

        space = ' ' * 10
        print
        print space+'              Timings'
        print space+'=========================================='
        print space+' format |     operation     | time (msec) '
        print space+'------------------------------------------'
        fmt = space+'   %3s  | %17s |  %7.1f  '

        for format in ['csr']:
            vars = dict( [(var,mat.asformat(format)) for (var,name,mat) in matrices ] )
            for X,Y in [ ('A','A'),('A','B'),('B','A'),('B','B') ]:
                x,y = vars[X],vars[Y]
                for op in ['__add__','__sub__','multiply','__div__','__mul__']:
                    fn = getattr(x,op)
                    fn(y) #warmup

                    start = time.clock()
                    iter = 0
                    while iter < 3 or time.clock() < start + 0.5:
                        fn(y)
                        iter += 1
                    end = time.clock()

                    msec_per_it = 1000*(end - start)/float(iter)
                    operation = (X + '.' + op + '(' + Y + ')').center(17)
                    print fmt % (format,operation,msec_per_it)


    def bench_sort(self):
        """sort CSR column indices"""
        matrices = []
        matrices.append( ('Rand10',  1e4,  10) )
        matrices.append( ('Rand25',  1e4,  25) )
        matrices.append( ('Rand50',  1e4,  50) )
        matrices.append( ('Rand100', 1e4, 100) )
        matrices.append( ('Rand200', 1e4, 200) )

        print
        print '                    Sparse Matrix Index Sorting'
        print '====================================================================='
        print ' type |    name      |         shape        |    nnz   | time (msec) '
        print '---------------------------------------------------------------------'
        fmt = '  %3s | %12s | %20s | %8d |   %6.2f  '

        for name,N,K in matrices:
            N = int(N)
            A = random_sparse(N,N,K)

            start = time.clock()
            iter = 0
            while iter < 5 and time.clock() - start < 1:
                A.has_sorted_indices = False
                A.indices[:2] = 2,1
                A.sort_indices()
                iter += 1
            end = time.clock()

            name = name.center(12)
            shape = ("%s" % (A.shape,)).center(20)

            print fmt % (A.format,name,shape,A.nnz,1e3*(end-start)/float(iter) )

    def bench_matvec(self):
        matrices = []
        matrices.append(('Identity',   sparse.identity(10**4,format='dia')))
        matrices.append(('Identity',   sparse.identity(10**4,format='csr')))
        matrices.append(('Poisson5pt', poisson2d(300,format='lil')))
        matrices.append(('Poisson5pt', poisson2d(300,format='dok')))
        matrices.append(('Poisson5pt', poisson2d(300,format='dia')))
        matrices.append(('Poisson5pt', poisson2d(300,format='coo')))
        matrices.append(('Poisson5pt', poisson2d(300,format='csr')))
        matrices.append(('Poisson5pt', poisson2d(300,format='csc')))
        matrices.append(('Poisson5pt', poisson2d(300,format='bsr')))

        A = sparse.kron(poisson2d(150),ones((2,2))).tobsr(blocksize=(2,2))
        matrices.append( ('Block2x2', A.tocsr()) )
        matrices.append( ('Block2x2', A) )

        A = sparse.kron(poisson2d(100),ones((3,3))).tobsr(blocksize=(3,3))
        matrices.append( ('Block3x3', A.tocsr()) )
        matrices.append( ('Block3x3', A) )

        print
        print '                 Sparse Matrix Vector Product'
        print '=================================================================='
        print ' type |    name      |         shape        |    nnz   |  MFLOPs  '
        print '------------------------------------------------------------------'
        fmt = '  %3s | %12s | %20s | %8d |  %6.1f '

        for name,A in matrices:
            x = ones(A.shape[1],dtype=A.dtype)

            y = A*x  #warmup

            start = time.clock()
            iter = 0
            while iter < 5 or time.clock() < start + 1:
                y = A*x
                iter += 1
            end = time.clock()

            del y

            name = name.center(12)
            shape = ("%s" % (A.shape,)).center(20)
            MFLOPs = (2*A.nnz*iter/(end-start))/float(1e6)

            print fmt % (A.format,name,shape,A.nnz,MFLOPs)

    def bench_matvecs(self):
        matrices = []
        matrices.append(('Poisson5pt', poisson2d(300,format='dia')))
        matrices.append(('Poisson5pt', poisson2d(300,format='coo')))
        matrices.append(('Poisson5pt', poisson2d(300,format='csr')))
        matrices.append(('Poisson5pt', poisson2d(300,format='csc')))
        matrices.append(('Poisson5pt', poisson2d(300,format='bsr')))


        n_vecs = 10

        print
        print '             Sparse Matrix (Block) Vector Product'
        print '                       Blocksize = %d' % (n_vecs,)
        print '=================================================================='
        print ' type |    name      |         shape        |    nnz   |  MFLOPs  '
        print '------------------------------------------------------------------'
        fmt = '  %3s | %12s | %20s | %8d |  %6.1f '

        for name,A in matrices:
            x = ones((A.shape[1],10),dtype=A.dtype)

            y = A*x  #warmup

            start = time.clock()
            iter = 0
            while iter < 5 or time.clock() < start + 1:
                y = A*x
                iter += 1
            end = time.clock()

            del y

            name = name.center(12)
            shape = ("%s" % (A.shape,)).center(20)
            MFLOPs = (2*n_vecs*A.nnz*iter/(end-start))/float(1e6)

            print fmt % (A.format,name,shape,A.nnz,MFLOPs)


    def bench_construction(self):
        """build matrices by inserting single values"""
        matrices = []
        matrices.append( ('Empty',csr_matrix((10000,10000))) )
        matrices.append( ('Identity',sparse.identity(10000)) )
        matrices.append( ('Poisson5pt', poisson2d(100)) )

        print
        print '                    Sparse Matrix Construction'
        print '===================================================================='
        print ' type |    name      |         shape        |    nnz   | time (sec) '
        print '--------------------------------------------------------------------'
        fmt = '  %3s | %12s | %20s | %8d |   %6.4f '

        for name,A in matrices:
            A = A.tocoo()

            for format in ['lil','dok']:

                start = time.clock()

                iter = 0
                while time.clock() < start + 0.5:
                    T = eval(format + '_matrix')(A.shape)
                    for i,j,v in zip(A.row,A.col,A.data):
                        T[i,j] = v
                    iter += 1
                end = time.clock()

                del T
                name = name.center(12)
                shape = ("%s" % (A.shape,)).center(20)

                print fmt % (format,name,shape,A.nnz,(end-start)/float(iter))

    def bench_conversion(self):
        A = poisson2d(100)

        formats = ['csr','csc','coo','dia','lil','dok']

        print
        print '                     Sparse Matrix Conversion'
        print '===================================================================='
        print ' format | tocsr() | tocsc() | tocoo() | todia() | tolil() | todok() '
        print '--------------------------------------------------------------------'

        for fromfmt in formats:
            base = getattr(A,'to' + fromfmt)()

            times = []

            for tofmt in formats:
                try:
                    fn = getattr(base,'to' + tofmt)
                except:
                    times.append(None)
                else:
                    x = fn() #warmup
                    start = time.clock()
                    iter = 0
                    while time.clock() < start + 0.2:
                        x = fn()
                        iter += 1
                    end = time.clock()
                    del x
                    times.append( (end - start)/float(iter))

            output = "  %3s   " % fromfmt
            for t in times:
                if t is None:
                    output += '|    n/a    '
                else:
                    output += '| %5.1fms ' % (1000*t)
            print output


#class TestLarge(TestCase):
#    def bench_large(self):
#        # Create a 100x100 matrix with 100 non-zero elements
#        # and play around with it
#        #TODO move this out of Common since it doesn't use spmatrix
#        random.seed(0)
#        A = dok_matrix((100,100))
#        for k in range(100):
#            i = random.randrange(100)
#            j = random.randrange(100)
#            A[i,j] = 1.
#        csr = A.tocsr()
#        csc = A.tocsc()
#        csc2 = csr.tocsc()
#        coo = A.tocoo()
#        csr2 = coo.tocsr()
#        assert_array_equal(A.transpose().todense(), csr.transpose().todense())
#        assert_array_equal(csc.todense(), csr.todense())
#        assert_array_equal(csr.todense(), csr2.todense())
#        assert_array_equal(csr2.todense().transpose(), coo.transpose().todense())
#        assert_array_equal(csr2.todense(), csc2.todense())
#        csr_plus_csc = csr + csc
#        csc_plus_csr = csc + csr
#        assert_array_equal(csr_plus_csc.todense(), (2*A).todense())
#        assert_array_equal(csr_plus_csc.todense(), csc_plus_csr.todense())


if __name__ == "__main__":
    run_module_suite()