1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
|
"""Compressed Sparse graph algorithms"""
__docformat__ = "restructuredtext en"
__all__ = ['cs_graph_components']
import numpy as np
from sparsetools import cs_graph_components as _cs_graph_components
from csr import csr_matrix
from base import isspmatrix
_msg0 = 'x must be a symmetric square matrix!'
_msg1 = _msg0 + '(has shape %s)'
def cs_graph_components(x):
"""
Determine connected components of a graph stored as a compressed
sparse row or column matrix.
For speed reasons, the symmetry of the matrix x is not checked. A
nonzero at index `(i, j)` means that node `i` is connected to node
`j` by an edge. The number of rows/columns of the matrix thus
corresponds to the number of nodes in the graph.
Parameters
-----------
x: ndarray-like, 2 dimensions, or sparse matrix
The adjacency matrix of the graph. Only the upper triangular part
is used.
Returns
--------
n_comp: int
The number of connected components.
label: ndarray (ints, 1 dimension):
The label array of each connected component (-2 is used to
indicate empty rows in the matrix: 0 everywhere, including
diagonal). This array has the length of the number of nodes,
i.e. one label for each node of the graph. Nodes having the same
label belong to the same connected component.
Notes
------
The matrix is assumed to be symmetric and the upper triangular part
of the matrix is used. The matrix is converted to a CSR matrix unless
it is already a CSR.
Examples
--------
>>> from scipy.sparse import cs_graph_components
>>> import numpy as np
>>> D = np.eye(4)
>>> D[0,1] = D[1,0] = 1
>>> cs_graph_components(D)
(3, array([0, 0, 1, 2]))
>>> from scipy.sparse import dok_matrix
>>> cs_graph_components(dok_matrix(D))
(3, array([0, 0, 1, 2]))
"""
try:
shape = x.shape
except AttributeError:
raise ValueError(_msg0)
if not ((len(x.shape) == 2) and (x.shape[0] == x.shape[1])):
raise ValueError(_msg1 % x.shape)
if isspmatrix(x):
x = x.tocsr()
else:
x = csr_matrix(x)
label = np.empty((shape[0],), dtype=x.indptr.dtype)
n_comp = _cs_graph_components(shape[0], x.indptr, x.indices, label)
return n_comp, label
|