File: linsolve.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (283 lines) | stat: -rw-r--r-- 9,161 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from warnings import warn

from numpy import asarray
from scipy.sparse import isspmatrix_csc, isspmatrix_csr, isspmatrix, \
        SparseEfficiencyWarning, csc_matrix

import _superlu

noScikit = False
try:
    import scikits.umfpack as umfpack
except ImportError:
    import umfpack
    noScikit = True

isUmfpack = hasattr( umfpack, 'UMFPACK_OK' )

useUmfpack = True


__all__ = [ 'use_solver', 'spsolve', 'splu', 'spilu', 'factorized' ]

def use_solver( **kwargs ):
    """
    Valid keyword arguments with defaults (other ignored):
      useUmfpack = True
      assumeSortedIndices = False

    The default sparse solver is umfpack when available. This can be changed by
    passing useUmfpack = False, which then causes the always present SuperLU
    based solver to be used.

    Umfpack requires a CSR/CSC matrix to have sorted column/row indices. If
    sure that the matrix fulfills this, pass assumeSortedIndices=True
    to gain some speed.
    """
    if 'useUmfpack' in kwargs:
        globals()['useUmfpack'] = kwargs['useUmfpack']

    if isUmfpack:
        umfpack.configure( **kwargs )


def spsolve(A, b, permc_spec=None, use_umfpack=True):
    """Solve the sparse linear system Ax=b
    """
    if isspmatrix( b ):
        b = b.toarray()

    if b.ndim > 1:
        if max( b.shape ) == b.size:
            b = b.squeeze()
        else:
            raise ValueError("rhs must be a vector (has shape %s)" % (b.shape,))

    if not (isspmatrix_csc(A) or isspmatrix_csr(A)):
        A = csc_matrix(A)
        warn('spsolve requires CSC or CSR matrix format', SparseEfficiencyWarning)

    A.sort_indices()
    A = A.asfptype()  #upcast to a floating point format

    M, N = A.shape
    if (M != N):
        raise ValueError("matrix must be square (has shape %s)" % ((M, N),))
    if M != b.size:
        raise ValueError("matrix - rhs size mismatch (%s - %s)"
              % (A.shape, b.size))

    use_umfpack = use_umfpack and useUmfpack

    if isUmfpack and use_umfpack:
        if noScikit:
            warn( 'scipy.sparse.linalg.dsolve.umfpack will be removed,'
                    ' install scikits.umfpack instead', DeprecationWarning )
        if A.dtype.char not in 'dD':
            raise ValueError("convert matrix data to double, please, using"
                  " .astype(), or set linsolve.useUmfpack = False")

        b = asarray(b, dtype=A.dtype).reshape(-1)

        family = {'d' : 'di', 'D' : 'zi'}
        umf = umfpack.UmfpackContext( family[A.dtype.char] )
        return umf.linsolve( umfpack.UMFPACK_A, A, b,
                             autoTranspose = True )

    else:
        if isspmatrix_csc(A):
            flag = 1 # CSC format
        elif isspmatrix_csr(A):
            flag = 0 # CSR format
        else:
            A = csc_matrix(A)
            flag = 1

        b = asarray(b, dtype=A.dtype)
        options = dict(ColPerm=permc_spec)
        return _superlu.gssv(N, A.nnz, A.data, A.indices, A.indptr, b, flag,
                             options=options)[0]

def splu(A, permc_spec=None, diag_pivot_thresh=None,
         drop_tol=None, relax=None, panel_size=None, options=dict()):
    """
    Compute the LU decomposition of a sparse, square matrix.

    Parameters
    ----------
    A
        Sparse matrix to factorize. Should be in CSR or CSC format.

    permc_spec : str, optional
        How to permute the columns of the matrix for sparsity preservation.
        (default: 'COLAMD')

        - ``NATURAL``: natural ordering.
        - ``MMD_ATA``: minimum degree ordering on the structure of A^T A.
        - ``MMD_AT_PLUS_A``: minimum degree ordering on the structure of A^T+A.
        - ``COLAMD``: approximate minimum degree column ordering

    diag_pivot_thresh : float, optional
        Threshold used for a diagonal entry to be an acceptable pivot.
        See SuperLU user's guide for details [SLU]_
    drop_tol : float, optional
        (deprecated) No effect.
    relax : int, optional
        Expert option for customizing the degree of relaxing supernodes.
        See SuperLU user's guide for details [SLU]_
    panel_size : int, optional
        Expert option for customizing the panel size.
        See SuperLU user's guide for details [SLU]_
    options : dict, optional
        Dictionary containing additional expert options to SuperLU.
        See SuperLU user guide [SLU]_ (section 2.4 on the 'Options' argument)
        for more details. For example, you can specify
        ``options=dict(Equil=False, IterRefine='SINGLE'))``
        to turn equilibration off and perform a single iterative refinement.

    Returns
    -------
    invA : scipy.sparse.linalg.dsolve._superlu.SciPyLUType
        Object, which has a ``solve`` method.

    See also
    --------
    spilu : incomplete LU decomposition

    Notes
    -----
    This function uses the SuperLU library.

    References
    ----------
    .. [SLU] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/

    """

    if not isspmatrix_csc(A):
        A = csc_matrix(A)
        warn('splu requires CSC matrix format', SparseEfficiencyWarning)

    A.sort_indices()
    A = A.asfptype()  #upcast to a floating point format

    M, N = A.shape
    if (M != N):
        raise ValueError("can only factor square matrices") #is this true?

    _options = dict(DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec,
                    PanelSize=panel_size, Relax=relax)
    if options is not None:
        _options.update(options)
    return _superlu.gstrf(N, A.nnz, A.data, A.indices, A.indptr,
                          ilu=False, options=_options)

def spilu(A, drop_tol=None, fill_factor=None, drop_rule=None, permc_spec=None,
          diag_pivot_thresh=None, relax=None, panel_size=None, options=None):
    """
    Compute an incomplete LU decomposition for a sparse, square matrix A.

    The resulting object is an approximation to the inverse of A.

    Parameters
    ----------
    A
        Sparse matrix to factorize

    drop_tol : float, optional
        Drop tolerance (0 <= tol <= 1) for an incomplete LU decomposition.
        (default: 1e-4)
    fill_factor : float, optional
        Specifies the fill ratio upper bound (>= 1.0) for ILU. (default: 10)
    drop_rule : str, optional
        Comma-separated string of drop rules to use.
        Available rules: ``basic``, ``prows``, ``column``, ``area``,
        ``secondary``, ``dynamic``, ``interp``. (Default: ``basic,area``)

        See SuperLU documentation for details.
    milu : str, optional
        Which version of modified ILU to use. (Choices: ``silu``,
        ``smilu_1``, ``smilu_2`` (default), ``smilu_3``.)

    Remaining other options
        Same as for `splu`

    Returns
    -------
    invA_approx : scipy.sparse.linalg.dsolve._superlu.SciPyLUType
        Object, which has a ``solve`` method.

    See also
    --------
    splu : complete LU decomposition

    Notes
    -----
    To improve the better approximation to the inverse, you may need to
    increase ``fill_factor`` AND decrease ``drop_tol``.

    This function uses the SuperLU library.

    References
    ----------
    .. [SLU] SuperLU http://crd.lbl.gov/~xiaoye/SuperLU/

    """

    if not isspmatrix_csc(A):
        A = csc_matrix(A)
        warn('splu requires CSC matrix format', SparseEfficiencyWarning)

    A.sort_indices()
    A = A.asfptype()  #upcast to a floating point format

    M, N = A.shape
    if (M != N):
        raise ValueError("can only factor square matrices") #is this true?

    _options = dict(ILU_DropRule=drop_rule, ILU_DropTol=drop_tol,
                    ILU_FillFactor=fill_factor,
                    DiagPivotThresh=diag_pivot_thresh, ColPerm=permc_spec,
                    PanelSize=panel_size, Relax=relax)
    if options is not None:
        _options.update(options)
    return _superlu.gstrf(N, A.nnz, A.data, A.indices, A.indptr,
                          ilu=True, options=_options)

def factorized( A ):
    """
    Return a fuction for solving a sparse linear system, with A pre-factorized.

    Example:
      solve = factorized( A ) # Makes LU decomposition.
      x1 = solve( rhs1 ) # Uses the LU factors.
      x2 = solve( rhs2 ) # Uses again the LU factors.
    """
    if isUmfpack and useUmfpack:
        if noScikit:
            warn( 'scipy.sparse.linalg.dsolve.umfpack will be removed,'
                    ' install scikits.umfpack instead', DeprecationWarning )

        if not isspmatrix_csc(A):
            A = csc_matrix(A)
            warn('splu requires CSC matrix format', SparseEfficiencyWarning)

        A.sort_indices()
        A = A.asfptype()  #upcast to a floating point format

        if A.dtype.char not in 'dD':
            raise ValueError("convert matrix data to double, please, using"
                  " .astype(), or set linsolve.useUmfpack = False")

        family = {'d' : 'di', 'D' : 'zi'}
        umf = umfpack.UmfpackContext( family[A.dtype.char] )

        # Make LU decomposition.
        umf.numeric( A )

        def solve( b ):
            return umf.solve( umfpack.UMFPACK_A, A, b, autoTranspose = True )

        return solve
    else:
        return splu( A ).solve