1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
|
#ifndef __COO_H__
#define __COO_H__
#include <algorithm>
#include <set>
/*
* Compute B = A for COO matrix A, CSR matrix B
*
*
* Input Arguments:
* I n_row - number of rows in A
* I n_col - number of columns in A
* I nnz - number of nonzeros in A
* I Ai[nnz(A)] - row indices
* I Aj[nnz(A)] - column indices
* T Ax[nnz(A)] - nonzeros
* Output Arguments:
* I Bp - row pointer
* I Bj - column indices
* T Bx - nonzeros
*
* Note:
* Output arrays Bp, Bj, and Bx must be preallocated
*
* Note:
* Input: row and column indices *are not* assumed to be ordered
*
* Note: duplicate entries are carried over to the CSR represention
*
* Complexity: Linear. Specifically O(nnz(A) + max(n_row,n_col))
*
*/
template <class I, class T>
void coo_tocsr(const I n_row,
const I n_col,
const I nnz,
const I Ai[],
const I Aj[],
const T Ax[],
I Bp[],
I Bj[],
T Bx[])
{
//compute number of non-zero entries per row of A
std::fill(Bp, Bp + n_row, 0);
for (I n = 0; n < nnz; n++){
Bp[Ai[n]]++;
}
//cumsum the nnz per row to get Bp[]
for(I i = 0, cumsum = 0; i < n_row; i++){
I temp = Bp[i];
Bp[i] = cumsum;
cumsum += temp;
}
Bp[n_row] = nnz;
//write Aj,Ax into Bj,Bx
for(I n = 0; n < nnz; n++){
I row = Ai[n];
I dest = Bp[row];
Bj[dest] = Aj[n];
Bx[dest] = Ax[n];
Bp[row]++;
}
for(I i = 0, last = 0; i <= n_row; i++){
I temp = Bp[i];
Bp[i] = last;
last = temp;
}
//now Bp,Bj,Bx form a CSR representation (with possible duplicates)
}
template<class I, class T>
void coo_tocsc(const I n_row,
const I n_col,
const I nnz,
const I Ai[],
const I Aj[],
const T Ax[],
I Bp[],
I Bi[],
T Bx[])
{ coo_tocsr<I,T>(n_col, n_row, nnz, Aj, Ai, Ax, Bp, Bi, Bx); }
/*
* Compute B += A for COO matrix A, dense matrix B
*
* Input Arguments:
* I n_row - number of rows in A
* I n_col - number of columns in A
* I nnz - number of nonzeros in A
* I Ai[nnz(A)] - row indices
* I Aj[nnz(A)] - column indices
* T Ax[nnz(A)] - nonzeros
* T Bx[n_row*n_col] - dense matrix
*
*/
template <class I, class T>
void coo_todense(const I n_row,
const I n_col,
const I nnz,
const I Ai[],
const I Aj[],
const T Ax[],
T Bx[])
{
for(I n = 0; n < nnz; n++){
Bx[ n_col * Ai[n] + Aj[n] ] += Ax[n];
}
}
/*
* Compute Y += A*X for COO matrix A and dense vectors X,Y
*
*
* Input Arguments:
* I nnz - number of nonzeros in A
* I Ai[nnz] - row indices
* I Aj[nnz] - column indices
* T Ax[nnz] - nonzero values
* T Xx[n_col] - input vector
*
* Output Arguments:
* T Yx[n_row] - output vector
*
* Notes:
* Output array Yx must be preallocated
*
* Complexity: Linear. Specifically O(nnz(A))
*
*/
template <class I, class T>
void coo_matvec(const I nnz,
const I Ai[],
const I Aj[],
const T Ax[],
const T Xx[],
T Yx[])
{
for(I n = 0; n < nnz; n++){
Yx[Ai[n]] += Ax[n] * Xx[Aj[n]];
}
}
/*
* Count the number of occupied diagonals in COO matrix A
*
* Input Arguments:
* I nnz - number of nonzeros in A
* I Ai[nnz(A)] - row indices
* I Aj[nnz(A)] - column indices
*
*/
template <class I>
I coo_count_diagonals(const I nnz,
const I Ai[],
const I Aj[])
{
std::set<I> diagonals;
for(I n = 0; n < nnz; n++){
diagonals.insert(Aj[n] - Ai[n]);
}
return diagonals.size();
}
#endif
|