1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
|
/* -*- C -*- (not really, but good for syntax highlighting) */
%{
#ifndef SWIG_FILE_WITH_INIT
# define NO_IMPORT_ARRAY
#endif
#include "stdio.h"
#include <numpy/arrayobject.h>
#include "complex_ops.h"
/* The following code originally appeared in
* enthought/kiva/agg/src/numeric.i written by Eric Jones. It was
* translated from C++ to C by John Hunter. Bill Spotz has modified
* it slightly to fix some minor bugs, upgrade to numpy (all
* versions), add some comments and some functionality.
*/
/* Macros to extract array attributes.
*/
#define is_array(a) ((a) && PyArray_Check((PyArrayObject *)a))
#define array_type(a) (int)(PyArray_TYPE(a))
#define array_numdims(a) (((PyArrayObject *)a)->nd)
#define array_dimensions(a) (((PyArrayObject *)a)->dimensions)
#define array_size(a,i) (((PyArrayObject *)a)->dimensions[i])
#define array_data(a) (((PyArrayObject *)a)->data)
#define array_is_contiguous(a) (PyArray_ISCONTIGUOUS(a))
#define array_is_native(a) (PyArray_ISNOTSWAPPED(a))
/* Support older NumPy data type names
*/
#if NDARRAY_VERSION < 0x01000000
#define NPY_BOOL PyArray_BOOL
#define NPY_BYTE PyArray_BYTE
#define NPY_UBYTE PyArray_UBYTE
#define NPY_SHORT PyArray_SHORT
#define NPY_USHORT PyArray_USHORT
#define NPY_INT PyArray_INT
#define NPY_UINT PyArray_UINT
#define NPY_LONG PyArray_LONG
#define NPY_ULONG PyArray_ULONG
#define NPY_LONGLONG PyArray_LONGLONG
#define NPY_ULONGLONG PyArray_ULONGLONG
#define NPY_FLOAT PyArray_FLOAT
#define NPY_DOUBLE PyArray_DOUBLE
#define NPY_LONGDOUBLE PyArray_LONGDOUBLE
#define NPY_CFLOAT PyArray_CFLOAT
#define NPY_CDOUBLE PyArray_CDOUBLE
#define NPY_CLONGDOUBLE PyArray_CLONGDOUBLE
#define NPY_OBJECT PyArray_OBJECT
#define NPY_STRING PyArray_STRING
#define NPY_UNICODE PyArray_UNICODE
#define NPY_VOID PyArray_VOID
#define NPY_NTYPES PyArray_NTYPES
#define NPY_NOTYPE PyArray_NOTYPE
#define NPY_CHAR PyArray_CHAR
#define NPY_USERDEF PyArray_USERDEF
#define npy_intp intp
#endif
/* Given a PyObject, return a string describing its type.
*/
const char* pytype_string(PyObject* py_obj) {
if (py_obj == NULL ) return "C NULL value";
if (py_obj == Py_None ) return "Python None" ;
if (PyCallable_Check(py_obj)) return "callable" ;
if (PyString_Check( py_obj)) return "string" ;
if (PyInt_Check( py_obj)) return "int" ;
if (PyFloat_Check( py_obj)) return "float" ;
if (PyDict_Check( py_obj)) return "dict" ;
if (PyList_Check( py_obj)) return "list" ;
if (PyTuple_Check( py_obj)) return "tuple" ;
if (PyFile_Check( py_obj)) return "file" ;
if (PyModule_Check( py_obj)) return "module" ;
if (PyInstance_Check(py_obj)) return "instance" ;
return "unkown type";
}
/* Given a NumPy typecode, return a string describing the type.
*/
const char* typecode_string(int typecode) {
static const char* type_names[25] = {"bool", "byte", "unsigned byte",
"short", "unsigned short", "int",
"unsigned int", "long", "unsigned long",
"long long", "unsigned long long",
"float", "double", "long double",
"complex float", "complex double",
"complex long double", "object",
"string", "unicode", "void", "ntypes",
"notype", "char", "unknown"};
return typecode < 24 ? type_names[typecode] : type_names[24];
}
/* Make sure input has correct numpy type. Allow character and byte
* to match. Also allow int and long to match. This is deprecated.
* You should use PyArray_EquivTypenums() instead.
*/
int type_match(int actual_type, int desired_type) {
return PyArray_EquivTypenums(actual_type, desired_type);
}
/* Given a PyObject pointer, cast it to a PyArrayObject pointer if
* legal. If not, set the python error string appropriately and
* return NULL.
*/
PyArrayObject* obj_to_array_no_conversion(PyObject* input, int typecode) {
PyArrayObject* ary = NULL;
if (is_array(input) && (typecode == NPY_NOTYPE ||
PyArray_EquivTypenums(array_type(input), typecode))) {
ary = (PyArrayObject*) input;
}
else if is_array(input) {
const char* desired_type = typecode_string(typecode);
const char* actual_type = typecode_string(array_type(input));
PyErr_Format(PyExc_TypeError,
"Array of type '%s' required. Array of type '%s' given",
desired_type, actual_type);
ary = NULL;
}
else {
const char * desired_type = typecode_string(typecode);
const char * actual_type = pytype_string(input);
PyErr_Format(PyExc_TypeError,
"Array of type '%s' required. A '%s' was given",
desired_type, actual_type);
ary = NULL;
}
return ary;
}
/* Convert the given PyObject to a NumPy array with the given
* typecode. On success, return a valid PyArrayObject* with the
* correct type. On failure, the python error string will be set and
* the routine returns NULL.
*/
PyArrayObject* obj_to_array_allow_conversion(PyObject* input, int typecode,
int* is_new_object) {
PyArrayObject* ary = NULL;
PyObject* py_obj;
if (is_array(input) && (typecode == NPY_NOTYPE ||
PyArray_EquivTypenums(array_type(input),typecode))) {
ary = (PyArrayObject*) input;
*is_new_object = 0;
}
else {
py_obj = PyArray_FromObject(input, typecode, 0, 0);
/* If NULL, PyArray_FromObject will have set python error value.*/
ary = (PyArrayObject*) py_obj;
*is_new_object = 1;
}
return ary;
}
/* Given a PyArrayObject, check to see if it is contiguous. If so,
* return the input pointer and flag it as not a new object. If it is
* not contiguous, create a new PyArrayObject using the original data,
* flag it as a new object and return the pointer.
*/
PyArrayObject* make_contiguous(PyArrayObject* ary, int* is_new_object,
int min_dims, int max_dims) {
PyArrayObject* result;
if (array_is_contiguous(ary)) {
result = ary;
*is_new_object = 0;
}
else {
result = (PyArrayObject*) PyArray_ContiguousFromObject((PyObject*)ary,
array_type(ary),
min_dims,
max_dims);
*is_new_object = 1;
}
return result;
}
/* Convert a given PyObject to a contiguous PyArrayObject of the
* specified type. If the input object is not a contiguous
* PyArrayObject, a new one will be created and the new object flag
* will be set.
*/
PyArrayObject* obj_to_array_contiguous_allow_conversion(PyObject* input,
int typecode,
int* is_new_object) {
int is_new1 = 0;
int is_new2 = 0;
PyArrayObject* ary2;
PyArrayObject* ary1 = obj_to_array_allow_conversion(input, typecode, &is_new1);
if (ary1) {
ary2 = make_contiguous(ary1, &is_new2, 0, 0);
if ( is_new1 && is_new2) {
Py_DECREF(ary1);
}
ary1 = ary2;
}
*is_new_object = is_new1 || is_new2;
return ary1;
}
/* Test whether a python object is contiguous. If array is
* contiguous, return 1. Otherwise, set the python error string and
* return 0.
*/
int require_contiguous(PyArrayObject* ary) {
int contiguous = 1;
if (!array_is_contiguous(ary)) {
PyErr_SetString(PyExc_TypeError,
"Array must be contiguous. A non-contiguous array was given");
contiguous = 0;
}
return contiguous;
}
/* Require that a numpy array is not byte-swapped. If the array is
* not byte-swapped, return 1. Otherwise, set the python error string
* and return 0.
*/
int require_native(PyArrayObject* ary) {
int native = 1;
if (!array_is_native(ary)) {
PyErr_SetString(PyExc_TypeError,
"Array must have native byteorder. A byte-swapped array was given");
native = 0;
}
return native;
}
/* Require the given PyArrayObject to have a specified number of
* dimensions. If the array has the specified number of dimensions,
* return 1. Otherwise, set the python error string and return 0.
*/
int require_dimensions(PyArrayObject* ary, int exact_dimensions) {
int success = 1;
if (array_numdims(ary) != exact_dimensions) {
PyErr_Format(PyExc_TypeError,
"Array must have %d dimensions. Given array has %d dimensions",
exact_dimensions, array_numdims(ary));
success = 0;
}
return success;
}
/* Require the given PyArrayObject to have one of a list of specified
* number of dimensions. If the array has one of the specified number
* of dimensions, return 1. Otherwise, set the python error string
* and return 0.
*/
int require_dimensions_n(PyArrayObject* ary, int* exact_dimensions, int n) {
int success = 0;
int i;
char dims_str[255] = "";
char s[255];
for (i = 0; i < n && !success; i++) {
if (array_numdims(ary) == exact_dimensions[i]) {
success = 1;
}
}
if (!success) {
for (i = 0; i < n-1; i++) {
sprintf(s, "%d, ", exact_dimensions[i]);
strcat(dims_str,s);
}
sprintf(s, " or %d", exact_dimensions[n-1]);
strcat(dims_str,s);
PyErr_Format(PyExc_TypeError,
"Array must be have %s dimensions. Given array has %d dimensions",
dims_str, array_numdims(ary));
}
return success;
}
/* Require the given PyArrayObject to have a specified shape. If the
* array has the specified shape, return 1. Otherwise, set the python
* error string and return 0.
*/
int require_size(PyArrayObject* ary, npy_intp* size, int n) {
int i;
int success = 1;
int len;
char desired_dims[255] = "[";
char s[255];
char actual_dims[255] = "[";
for(i=0; i < n;i++) {
if (size[i] != -1 && size[i] != array_size(ary,i)) {
success = 0;
}
}
if (!success) {
for (i = 0; i < n; i++) {
if (size[i] == -1) {
sprintf(s, "*,");
}
else
{
sprintf(s,"%" NPY_INTP_FMT ",", size[i]);
}
strcat(desired_dims,s);
}
len = strlen(desired_dims);
desired_dims[len-1] = ']';
for (i = 0; i < n; i++) {
sprintf(s,"%" NPY_INTP_FMT ",", array_size(ary,i));
strcat(actual_dims,s);
}
len = strlen(actual_dims);
actual_dims[len-1] = ']';
PyErr_Format(PyExc_TypeError,
"Array must be have shape of %s. Given array has shape of %s",
desired_dims, actual_dims);
}
return success;
}
/* End John Hunter translation (with modifications by Bill Spotz) */
/*!
Appends @a what to @a where. On input, @a where need not to be a tuple, but on
return it always is.
@par Revision history:
- 17.02.2005, c
*/
PyObject *helper_appendToTuple( PyObject *where, PyObject *what ) {
PyObject *o2, *o3;
if ((!where) || (where == Py_None)) {
where = what;
} else {
if (!PyTuple_Check( where )) {
o2 = where;
where = PyTuple_New( 1 );
PyTuple_SetItem( where, 0, o2 );
}
o3 = PyTuple_New( 1 );
PyTuple_SetItem( o3, 0, what );
o2 = where;
where = PySequence_Concat( o2, o3 );
Py_DECREF( o2 );
Py_DECREF( o3 );
}
return where;
}
%}
/* TYPEMAP_IN macros
*
* This family of typemaps allows pure input C arguments of the form
*
* (type* IN_ARRAY1, int DIM1)
* (type* IN_ARRAY2, int DIM1, int DIM2)
*
* where "type" is any type supported by the Numeric module, to be
* called in python with an argument list of a single array (or any
* python object that can be passed to the Numeric.array constructor
* to produce an arrayof te specified shape). This can be applied to
* a existing functions using the %apply directive:
*
* %apply (double* IN_ARRAY1, int DIM1) {double* series, int length}
* %apply (double* IN_ARRAY2, int DIM1, int DIM2) {double* mx, int rows, int cols}
* double sum(double* series, int length);
* double max(double* mx, int rows, int cols);
*
* or with
*
* double sum(double* IN_ARRAY1, int DIM1);
* double max(double* IN_ARRAY2, int DIM1, int DIM2);
*/
/* One dimensional input arrays */
%define TYPEMAP_IN1(type,typecode)
%typemap(in) type* IN_ARRAY1 (PyArrayObject* array=NULL, int is_new_object) {
npy_intp size[1] = {-1};
array = obj_to_array_contiguous_allow_conversion($input, typecode, &is_new_object);
if (!array || !require_dimensions(array,1) || !require_size(array,size,1)
|| !require_contiguous(array) || !require_native(array)) SWIG_fail;
$1 = (type*) array->data;
}
%typemap(freearg) type* IN_ARRAY1 {
if (is_new_object$argnum && array$argnum) { Py_DECREF(array$argnum); }
}
%enddef
/* Two dimensional input arrays */
%define TYPEMAP_IN2(type,typecode)
%typemap(in) (type* IN_ARRAY2)
(PyArrayObject* array=NULL, int is_new_object) {
npy_intp size[2] = {-1,-1};
array = obj_to_array_contiguous_allow_conversion($input, typecode, &is_new_object);
if (!array || !require_dimensions(array,2) || !require_size(array,size,1)
|| !require_contiguous(array) || !require_native(array)) SWIG_fail;
$1 = (type*) array->data;
}
%typemap(freearg) (type* IN_ARRAY2) {
if (is_new_object$argnum && array$argnum) { Py_DECREF(array$argnum); }
}
%enddef
/* TYPEMAP_INPLACE macros
*
* This family of typemaps allows input/output C arguments of the form
*
* (type* INPLACE_ARRAY1, int DIM1)
* (type* INPLACE_ARRAY2, int DIM1, int DIM2)
*
* where "type" is any type supported by the Numeric module, to be
* called in python with an argument list of a single contiguous
* Numeric array. This can be applied to an existing function using
* the %apply directive:
*
* %apply (double* INPLACE_ARRAY1, int DIM1) {double* series, int length}
* %apply (double* INPLACE_ARRAY2, int DIM1, int DIM2) {double* mx, int rows, int cols}
* void negate(double* series, int length);
* void normalize(double* mx, int rows, int cols);
*
*
* or with
*
* void sum(double* INPLACE_ARRAY1, int DIM1);
* void sum(double* INPLACE_ARRAY2, int DIM1, int DIM2);
*/
/* One dimensional input/output arrays */
%define TYPEMAP_INPLACE1(type,typecode)
%typemap(in) (type* INPLACE_ARRAY) (PyArrayObject* temp=NULL) {
temp = obj_to_array_no_conversion($input,typecode);
if (!temp || !require_contiguous(temp) || !require_native(temp)) SWIG_fail;
$1 = (type*) array_data(temp);
}
%enddef
/* Two dimensional input/output arrays */
%define TYPEMAP_INPLACE2(type,typecode)
%typemap(in) (type* INPLACE_ARRAY2) (PyArrayObject* temp=NULL) {
temp = obj_to_array_no_conversion($input,typecode);
if (!temp || !require_contiguous(temp) || !require_native(temp)) SWIG_fail;
$1 = (type*) array_data(temp);
}
%enddef
/* TYPEMAP_ARGOUT macros
*
* This family of typemaps allows output C arguments of the form
*
* (type* ARGOUT_ARRAY[ANY])
* (type* ARGOUT_ARRAY[ANY][ANY])
*
* where "type" is any type supported by the Numeric module, to be
* called in python with an argument list of a single contiguous
* Numeric array. This can be applied to an existing function using
* the %apply directive:
*
* %apply (double* ARGOUT_ARRAY[ANY] {double series, int length}
* %apply (double* ARGOUT_ARRAY[ANY][ANY]) {double* mx, int rows, int cols}
* void negate(double* series, int length);
* void normalize(double* mx, int rows, int cols);
*
*
* or with
*
* void sum(double* ARGOUT_ARRAY[ANY]);
* void sum(double* ARGOUT_ARRAY[ANY][ANY]);
*/
/* One dimensional input/output arrays */
/*%define TYPEMAP_ARGOUT1(type,typecode)
%typemap(in,numinputs=0) type ARGOUT_ARRAY[ANY] {
$1 = (type*) malloc($1_dim0*sizeof(type));
if (!$1) {
PyErr_SetString(PyExc_RuntimeError, "Failed to allocate memory");
SWIG_fail;
}
}
%typemap(argout) ARGOUT_ARRAY[ANY] {
int dimensions[1] = {$1_dim0};
PyObject* outArray = PyArray_FromDimsAndData(1, dimensions, typecode, (char*)$1);
}
%enddef
*/
/* Two dimensional input/output arrays */
/*%define TYPEMAP_ARGOUT2(type,typecode)
%typemap(in) (type* ARGOUT_ARRAY2, int DIM1, int DIM2) (PyArrayObject* temp=NULL) {
temp = obj_to_array_no_conversion($input,typecode);
if (!temp || !require_contiguous(temp) || !require_native(temp)) SWIG_fail;
$1 = (type*) array(temp);
$2 = temp->dimensions[0];
$3 = temp->dimensions[1];
}
%enddef
*/
/*
* WNBELL additions
*/
/*
* Use STL vectors for ARGOUTs
*/
%define VEC_ARRAY_ARGOUT( ctype, atype )
%typemap( in, numinputs=0 ) std::vector<ctype>* array_argout( std::vector<ctype>* tmp ) {
tmp = new std::vector<ctype>();
$1 = tmp;
};
%typemap( argout ) std::vector<ctype>* array_argout {
npy_intp length = ($1)->size();
PyObject *obj = PyArray_SimpleNew(1, &length, ##atype);
if (length > 0) {
memcpy(PyArray_DATA(obj), &((*($1))[0]), sizeof(ctype)*length);
}
delete $1;
$result = helper_appendToTuple( $result, (PyObject *)obj );
};
%enddef
/*
* make typechecks - used for overloading
*/
%include "typemaps.i"
%define NPY_TYPECHECK( ctype, atype )
%typemap(typecheck) ctype *, const ctype *, ctype [], const ctype []
{
$1 = (is_array($input) && PyArray_CanCastSafely(PyArray_TYPE($input), ##atype)) ? 1 : 0;
};
%enddef
%define INSTANTIATE_TYPEMAPS(type,typecode)
TYPEMAP_IN1( type,typecode)
TYPEMAP_IN1(const type,typecode)
TYPEMAP_IN2( type,typecode)
TYPEMAP_IN2(const type,typecode)
TYPEMAP_INPLACE1(type,typecode)
TYPEMAP_INPLACE2(type,typecode)
/*TYPEMAP_ARGOUT1(type, typecode)
TYPEMAP_ARGOUT2(type, typecode)*/
VEC_ARRAY_ARGOUT(type, typecode)
NPY_TYPECHECK(type, typecode)
%enddef
INSTANTIATE_TYPEMAPS(char, PyArray_CHAR )
INSTANTIATE_TYPEMAPS(unsigned char, PyArray_UBYTE )
INSTANTIATE_TYPEMAPS(signed char, PyArray_BYTE )
INSTANTIATE_TYPEMAPS(short, PyArray_SHORT )
INSTANTIATE_TYPEMAPS(unsigned short, PyArray_USHORT )
INSTANTIATE_TYPEMAPS(int, PyArray_INT )
INSTANTIATE_TYPEMAPS(unsigned int, PyArray_UINT )
INSTANTIATE_TYPEMAPS(long, PyArray_LONG )
INSTANTIATE_TYPEMAPS(long long, PyArray_LONGLONG )
INSTANTIATE_TYPEMAPS(unsigned long long, PyArray_ULONGLONG )
INSTANTIATE_TYPEMAPS(float, PyArray_FLOAT )
INSTANTIATE_TYPEMAPS(double, PyArray_DOUBLE )
INSTANTIATE_TYPEMAPS(long double, PyArray_LONGDOUBLE )
INSTANTIATE_TYPEMAPS(npy_cfloat_wrapper, PyArray_CFLOAT )
INSTANTIATE_TYPEMAPS(npy_cdouble_wrapper, PyArray_CDOUBLE )
INSTANTIATE_TYPEMAPS(npy_clongdouble_wrapper, PyArray_CLONGDOUBLE)
INSTANTIATE_TYPEMAPS(PyObject, PyArray_OBJECT )
#undef TYPEMAP_IN1
#undef TYPEMAP_IN2
#undef TYPEMAP_INPLACE1
#undef TYPEMAP_INPLACE2
#undef TYPEMAP_ARGOUT1
#undef TYPEMAP_ARGOUT2
#under NPY_TYPECHECK
|