File: ckdtree.pyx

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (594 lines) | stat: -rw-r--r-- 20,986 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
# Copyright Anne M. Archibald 2008
# Released under the scipy license
import numpy as np
cimport numpy as np
cimport stdlib

import kdtree

cdef double infinity = np.inf

__all__ = ['cKDTree']


# priority queue
cdef union heapcontents:
    int intdata
    char* ptrdata

cdef struct heapitem:
    double priority
    heapcontents contents

cdef struct heap:
    int n
    heapitem* heap
    int space

cdef inline heapcreate(heap* self,int initial_size):
    self.space = initial_size
    self.heap = <heapitem*>stdlib.malloc(sizeof(heapitem)*self.space)
    self.n=0

cdef inline heapdestroy(heap* self):
    stdlib.free(self.heap)

cdef inline heapresize(heap* self, int new_space):
    if new_space<self.n:
        raise ValueError("Heap containing %d items cannot be resized to %d" % (self.n, new_space))
    self.space = new_space
    self.heap = <heapitem*>stdlib.realloc(<void*>self.heap,new_space*sizeof(heapitem))

cdef inline heappush(heap* self, heapitem item):
    cdef int i
    cdef heapitem t

    self.n += 1
    if self.n>self.space:
        heapresize(self,2*self.space+1)

    i = self.n-1
    self.heap[i] = item
    while i>0 and self.heap[i].priority<self.heap[(i-1)//2].priority:
        t = self.heap[(i-1)//2]
        self.heap[(i-1)//2] = self.heap[i]
        self.heap[i] = t
        i = (i-1)//2

cdef heapitem heappeek(heap* self):
    return self.heap[0]

cdef heapremove(heap* self):
    cdef heapitem t
    cdef int i, j, k, l

    self.heap[0] = self.heap[self.n-1]
    self.n -= 1
    if self.n < self.space//4 and self.space>40: #FIXME: magic number
        heapresize(self,self.space//2+1)

    i=0
    j=1
    k=2
    while ((j<self.n and 
                self.heap[i].priority > self.heap[j].priority or
            k<self.n and 
                self.heap[i].priority > self.heap[k].priority)):
        if k<self.n and self.heap[j].priority>self.heap[k].priority:
            l = k
        else:
            l = j
        t = self.heap[l]
        self.heap[l] = self.heap[i]
        self.heap[i] = t
        i = l
        j = 2*i+1
        k = 2*i+2

cdef heapitem heappop(heap* self):
    cdef heapitem it
    it = heappeek(self)
    heapremove(self)
    return it





# utility functions
cdef inline double dmax(double x, double y):
    if x>y:
        return x
    else:
        return y
cdef inline double dabs(double x):
    if x>0:
        return x
    else:
        return -x
cdef inline double _distance_p(double*x,double*y,double p,int k,double upperbound):
    """Compute the distance between x and y

    Computes the Minkowski p-distance to the power p between two points.
    If the distance**p is larger than upperbound, then any number larger
    than upperbound may be returned (the calculation is truncated).
    """
    cdef int i
    cdef double r
    r = 0
    if p==infinity:
        for i in range(k):
            r = dmax(r,dabs(x[i]-y[i]))
            if r>upperbound:
                return r
    elif p==1:
        for i in range(k):
            r += dabs(x[i]-y[i])
            if r>upperbound:
                return r
    else:
        for i in range(k):
            r += dabs(x[i]-y[i])**p
            if r>upperbound:
                return r
    return r



# Tree structure
cdef struct innernode:
    int split_dim
    int n_points
    double split
    innernode* less
    innernode* greater
cdef struct leafnode:
    int split_dim
    int n_points
    int start_idx
    int end_idx

# this is the standard trick for variable-size arrays:
# malloc sizeof(nodeinfo)+self.m*sizeof(double) bytes.
cdef struct nodeinfo:
    innernode* node
    double side_distances[0]

cdef class cKDTree:
    """kd-tree for quick nearest-neighbor lookup

    This class provides an index into a set of k-dimensional points
    which can be used to rapidly look up the nearest neighbors of any
    point. 

    The algorithm used is described in Maneewongvatana and Mount 1999. 
    The general idea is that the kd-tree is a binary trie, each of whose
    nodes represents an axis-aligned hyperrectangle. Each node specifies
    an axis and splits the set of points based on whether their coordinate
    along that axis is greater than or less than a particular value. 

    During construction, the axis and splitting point are chosen by the 
    "sliding midpoint" rule, which ensures that the cells do not all
    become long and thin. 

    The tree can be queried for the r closest neighbors of any given point 
    (optionally returning only those within some maximum distance of the 
    point). It can also be queried, with a substantial gain in efficiency, 
    for the r approximate closest neighbors.

    For large dimensions (20 is already large) do not expect this to run 
    significantly faster than brute force. High-dimensional nearest-neighbor
    queries are a substantial open problem in computer science.

    Parameters
    ----------
    data : array-like, shape (n,m)
        The n data points of dimension mto be indexed. This array is 
        not copied unless this is necessary to produce a contiguous 
        array of doubles, and so modifying this data will result in 
        bogus results.
    leafsize : positive integer
        The number of points at which the algorithm switches over to
        brute-force.

    """

    cdef innernode* tree 
    cdef readonly object data
    cdef double* raw_data
    cdef readonly int n, m
    cdef readonly int leafsize
    cdef readonly object maxes
    cdef double* raw_maxes
    cdef readonly object mins
    cdef double* raw_mins
    cdef object indices
    cdef np.int32_t* raw_indices
    def __init__(cKDTree self, data, int leafsize=10):
        cdef np.ndarray[double, ndim=2] inner_data
        cdef np.ndarray[double, ndim=1] inner_maxes
        cdef np.ndarray[double, ndim=1] inner_mins
        cdef np.ndarray[np.int32_t, ndim=1] inner_indices
        self.data = np.ascontiguousarray(data,dtype=np.float)
        self.n, self.m = np.shape(self.data)
        self.leafsize = leafsize
        if self.leafsize<1:
            raise ValueError("leafsize must be at least 1")
        self.maxes = np.ascontiguousarray(np.amax(self.data,axis=0))
        self.mins = np.ascontiguousarray(np.amin(self.data,axis=0))
        self.indices = np.ascontiguousarray(np.arange(self.n,dtype=np.int32))

        inner_data = self.data
        self.raw_data = <double*>inner_data.data
        inner_maxes = self.maxes
        self.raw_maxes = <double*>inner_maxes.data
        inner_mins = self.mins
        self.raw_mins = <double*>inner_mins.data
        inner_indices = self.indices
        self.raw_indices = <np.int32_t*>inner_indices.data

        self.tree = self.__build(0, self.n, self.raw_maxes, self.raw_mins)

    cdef innernode* __build(cKDTree self, int start_idx, int end_idx, double* maxes, double* mins):
        cdef leafnode* n
        cdef innernode* ni
        cdef int i, j, t, p, q, d
        cdef double size, split, minval, maxval
        cdef double*mids
        if end_idx-start_idx<=self.leafsize:
            n = <leafnode*>stdlib.malloc(sizeof(leafnode))
            n.split_dim = -1
            n.start_idx = start_idx
            n.end_idx = end_idx
            return <innernode*>n
        else:
            d = 0 
            size = 0
            for i in range(self.m):
                if maxes[i]-mins[i] > size:
                    d = i
                    size =  maxes[i]-mins[i]
            maxval = maxes[d]
            minval = mins[d]
            if maxval==minval:
                # all points are identical; warn user?
                n = <leafnode*>stdlib.malloc(sizeof(leafnode))
                n.split_dim = -1
                n.start_idx = start_idx
                n.end_idx = end_idx
                return <innernode*>n

            split = (maxval+minval)/2

            p = start_idx
            q = end_idx-1
            while p<=q:
                if self.raw_data[self.raw_indices[p]*self.m+d]<split:
                    p+=1
                elif self.raw_data[self.raw_indices[q]*self.m+d]>=split:
                    q-=1
                else:
                    t = self.raw_indices[p]
                    self.raw_indices[p] = self.raw_indices[q]
                    self.raw_indices[q] = t
                    p+=1
                    q-=1

            # slide midpoint if necessary
            if p==start_idx:
                # no points less than split
                j = start_idx
                split = self.raw_data[self.raw_indices[j]*self.m+d]
                for i in range(start_idx+1, end_idx):
                    if self.raw_data[self.raw_indices[i]*self.m+d]<split:
                        j = i
                        split = self.raw_data[self.raw_indices[j]*self.m+d]
                t = self.raw_indices[start_idx]
                self.raw_indices[start_idx] = self.raw_indices[j]
                self.raw_indices[j] = t
                p = start_idx+1
                q = start_idx
            elif p==end_idx:
                # no points greater than split
                j = end_idx-1
                split = self.raw_data[self.raw_indices[j]*self.m+d]
                for i in range(start_idx, end_idx-1):
                    if self.raw_data[self.raw_indices[i]*self.m+d]>split:
                        j = i
                        split = self.raw_data[self.raw_indices[j]*self.m+d]
                t = self.raw_indices[end_idx-1]
                self.raw_indices[end_idx-1] = self.raw_indices[j]
                self.raw_indices[j] = t
                p = end_idx-1
                q = end_idx-2

            # construct new node representation
            ni = <innernode*>stdlib.malloc(sizeof(innernode))

            mids = <double*>stdlib.malloc(sizeof(double)*self.m)
            for i in range(self.m):
                mids[i] = maxes[i]
            mids[d] = split
            ni.less = self.__build(start_idx,p,mids,mins)

            for i in range(self.m):
                mids[i] = mins[i]
            mids[d] = split
            ni.greater = self.__build(p,end_idx,maxes,mids)

            stdlib.free(mids)

            ni.split_dim = d
            ni.split = split

            return ni
                    
    cdef __free_tree(cKDTree self, innernode* node):
        if node.split_dim!=-1:
            self.__free_tree(node.less)
            self.__free_tree(node.greater)
        stdlib.free(node)

    def __dealloc__(cKDTree self):
        if <int>(self.tree) == 0:
            # should happen only if __init__ was never called
            return
        self.__free_tree(self.tree)

    cdef void __query(cKDTree self, 
            double*result_distances, 
            int*result_indices, 
            double*x, 
            int k, 
            double eps, 
            double p, 
            double distance_upper_bound):
        cdef heap q
        cdef heap neighbors

        cdef int i, j
        cdef double t
        cdef nodeinfo* inf
        cdef nodeinfo* inf2
        cdef double d
        cdef double epsfac
        cdef double min_distance
        cdef double far_min_distance
        cdef heapitem it, it2, neighbor
        cdef leafnode* node
        cdef innernode* inode
        cdef innernode* near
        cdef innernode* far
        cdef double* side_distances

        # priority queue for chasing nodes
        # entries are:
        #  minimum distance between the cell and the target
        #  distances between the nearest side of the cell and the target
        #  the head node of the cell
        heapcreate(&q,12)

        # priority queue for the nearest neighbors
        # furthest known neighbor first
        # entries are (-distance**p, i)
        heapcreate(&neighbors,k)

        # set up first nodeinfo
        inf = <nodeinfo*>stdlib.malloc(sizeof(nodeinfo)+self.m*sizeof(double)) 
        inf.node = self.tree
        for i in range(self.m):
            inf.side_distances[i] = 0
            t = x[i]-self.raw_maxes[i]
            if t>inf.side_distances[i]:
                inf.side_distances[i] = t
            else:
                t = self.raw_mins[i]-x[i]
                if t>inf.side_distances[i]:
                    inf.side_distances[i] = t
            if p!=1 and p!=infinity:
                inf.side_distances[i]=inf.side_distances[i]**p

        # compute first distance
        min_distance = 0.
        for i in range(self.m):
            if p==infinity:
                min_distance = dmax(min_distance,inf.side_distances[i])
            else:
                min_distance += inf.side_distances[i]

        # fiddle approximation factor
        if eps==0:
            epsfac=1
        elif p==infinity:
            epsfac = 1/(1+eps)
        else:
            epsfac = 1/(1+eps)**p

        # internally we represent all distances as distance**p
        if p!=infinity and distance_upper_bound!=infinity:
            distance_upper_bound = distance_upper_bound**p

        while True:
            if inf.node.split_dim==-1:
                node = <leafnode*>inf.node

                # brute-force
                for i in range(node.start_idx,node.end_idx):
                    d = _distance_p(
                            self.raw_data+self.raw_indices[i]*self.m,
                            x,p,self.m,distance_upper_bound)
                        
                    if d<distance_upper_bound:
                        # replace furthest neighbor
                        if neighbors.n==k:
                            heapremove(&neighbors)
                        neighbor.priority = -d
                        neighbor.contents.intdata = self.raw_indices[i]
                        heappush(&neighbors,neighbor)

                        # adjust upper bound for efficiency
                        if neighbors.n==k:
                            distance_upper_bound = -heappeek(&neighbors).priority
                # done with this node, get another
                stdlib.free(inf)
                if q.n==0:
                    # no more nodes to visit
                    break
                else:
                    it = heappop(&q)
                    inf = <nodeinfo*>it.contents.ptrdata
                    min_distance = it.priority
            else:
                inode = <innernode*>inf.node

                # we don't push cells that are too far onto the queue at all,
                # but since the distance_upper_bound decreases, we might get 
                # here even if the cell's too far
                if min_distance>distance_upper_bound*epsfac:
                    # since this is the nearest cell, we're done, bail out
                    stdlib.free(inf)
                    # free all the nodes still on the heap
                    for i in range(q.n):
                        stdlib.free(q.heap[i].contents.ptrdata)
                    break

                # set up children for searching
                if x[inode.split_dim]<inode.split:
                    near = inode.less
                    far = inode.greater
                else:
                    near = inode.greater
                    far = inode.less

                # near child is at the same distance as the current node
                # we're going here next, so no point pushing it on the queue
                # no need to recompute the distance or the side_distances
                inf.node = near

                # far child is further by an amount depending only
                # on the split value; compute its distance and side_distances
                # and push it on the queue if it's near enough
                inf2 = <nodeinfo*>stdlib.malloc(sizeof(nodeinfo)+self.m*sizeof(double)) 
                it2.contents.ptrdata = <char*> inf2
                inf2.node = far
                # most side distances unchanged
                for i in range(self.m):
                    inf2.side_distances[i] = inf.side_distances[i]

                # one side distance changes
                # we can adjust the minimum distance without recomputing
                if p == infinity:
                    # we never use side_distances in the l_infinity case
                    # inf2.side_distances[inode.split_dim] = dabs(inode.split-x[inode.split_dim])
                    far_min_distance = dmax(min_distance, dabs(inode.split-x[inode.split_dim]))
                elif p == 1:
                    inf2.side_distances[inode.split_dim] = dabs(inode.split-x[inode.split_dim])
                    far_min_distance = min_distance - inf.side_distances[inode.split_dim] + inf2.side_distances[inode.split_dim]
                else:
                    inf2.side_distances[inode.split_dim] = dabs(inode.split-x[inode.split_dim])**p
                    far_min_distance = min_distance - inf.side_distances[inode.split_dim] + inf2.side_distances[inode.split_dim]

                it2.priority = far_min_distance


                # far child might be too far, if so, don't bother pushing it
                if far_min_distance<=distance_upper_bound*epsfac:
                    heappush(&q,it2)
                else:
                    stdlib.free(inf2)
                    # just in case
                    it2.contents.ptrdata = <char*> 0

        # fill output arrays with sorted neighbors 
        for i in range(neighbors.n-1,-1,-1):
            neighbor = heappop(&neighbors) # FIXME: neighbors may be realloced
            result_indices[i] = neighbor.contents.intdata
            if p==1 or p==infinity:
                result_distances[i] = -neighbor.priority
            else:
                result_distances[i] = (-neighbor.priority)**(1./p)

        heapdestroy(&q)
        heapdestroy(&neighbors)

    def query(cKDTree self, object x, int k=1, double eps=0, double p=2, 
            double distance_upper_bound=infinity):
        """query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf)
        
        Query the kd-tree for nearest neighbors.

        Parameters
        ----------
        x : array_like, last dimension self.m
            An array of points to query.
        k : int
            The number of nearest neighbors to return.
        eps : non-negative float
            Return approximate nearest neighbors; the k-th returned value 
            is guaranteed to be no further than (1 + `eps`) times the 
            distance to the real k-th nearest neighbor.
        p : float, 1 <= p <= infinity
            Which Minkowski p-norm to use. 
            1 is the sum-of-absolute-values "Manhattan" distance.
            2 is the usual Euclidean distance.
            infinity is the maximum-coordinate-difference distance.
        distance_upper_bound : non-negative float
            Return only neighbors within this distance.  This is used to prune
            tree searches, so if you are doing a series of nearest-neighbor
            queries, it may help to supply the distance to the nearest neighbor
            of the most recent point.

        Returns
        -------
        d : ndarray of floats
            The distances to the nearest neighbors. 
            If `x` has shape tuple+(self.m,), then `d` has shape tuple+(k,).
            Missing neighbors are indicated with infinite distances.
        i : ndarray of ints
            The locations of the neighbors in self.data.
            If `x` has shape tuple+(self.m,), then `i` has shape tuple+(k,).
            Missing neighbors are indicated with self.n.

        """
        cdef np.ndarray[int, ndim=2] ii
        cdef np.ndarray[double, ndim=2] dd
        cdef np.ndarray[double, ndim=2] xx
        cdef int c
        x = np.asarray(x).astype(np.float)
        if np.shape(x)[-1] != self.m:
            raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x)))
        if p<1:
            raise ValueError("Only p-norms with 1<=p<=infinity permitted")
        if len(x.shape)==1:
            single = True
            x = x[np.newaxis,:]
        else:
            single = False
        retshape = np.shape(x)[:-1]
        n = np.prod(retshape)
        xx = np.reshape(x,(n,self.m))
        xx = np.ascontiguousarray(xx)
        dd = np.empty((n,k),dtype=np.float)
        dd.fill(infinity)
        ii = np.empty((n,k),dtype='i')
        ii.fill(self.n)
        for c in range(n):
            self.__query(
                    (<double*>dd.data)+c*k,
                    (<int*>ii.data)+c*k,
                    (<double*>xx.data)+c*self.m, 
                    k, 
                    eps,
                    p, 
                    distance_upper_bound)
        if single:
            if k==1:
                return dd[0,0], ii[0,0]
            else:
                return dd[0], ii[0]
        else:
            if k==1:
                return np.reshape(dd[...,0],retshape), np.reshape(ii[...,0],retshape)
            else:
                return np.reshape(dd,retshape+(k,)), np.reshape(ii,retshape+(k,))