1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178
|
"""
=====================================================
Distance computations (:mod:`scipy.spatial.distance`)
=====================================================
.. sectionauthor:: Damian Eads
Function Reference
------------------
Distance matrix computation from a collection of raw observation vectors
stored in a rectangular array.
.. autosummary::
:toctree: generated/
pdist -- pairwise distances between observation vectors.
cdist -- distances between between two collections of observation vectors
squareform -- convert distance matrix to a condensed one and vice versa
Predicates for checking the validity of distance matrices, both
condensed and redundant. Also contained in this module are functions
for computing the number of observations in a distance matrix.
.. autosummary::
:toctree: generated/
is_valid_dm -- checks for a valid distance matrix
is_valid_y -- checks for a valid condensed distance matrix
num_obs_dm -- # of observations in a distance matrix
num_obs_y -- # of observations in a condensed distance matrix
Distance functions between two vectors ``u`` and ``v``. Computing
distances over a large collection of vectors is inefficient for these
functions. Use ``pdist`` for this purpose.
.. autosummary::
:toctree: generated/
braycurtis -- the Bray-Curtis distance.
canberra -- the Canberra distance.
chebyshev -- the Chebyshev distance.
cityblock -- the Manhattan distance.
correlation -- the Correlation distance.
cosine -- the Cosine distance.
dice -- the Dice dissimilarity (boolean).
euclidean -- the Euclidean distance.
hamming -- the Hamming distance (boolean).
jaccard -- the Jaccard distance (boolean).
kulsinski -- the Kulsinski distance (boolean).
mahalanobis -- the Mahalanobis distance.
matching -- the matching dissimilarity (boolean).
minkowski -- the Minkowski distance.
rogerstanimoto -- the Rogers-Tanimoto dissimilarity (boolean).
russellrao -- the Russell-Rao dissimilarity (boolean).
seuclidean -- the normalized Euclidean distance.
sokalmichener -- the Sokal-Michener dissimilarity (boolean).
sokalsneath -- the Sokal-Sneath dissimilarity (boolean).
sqeuclidean -- the squared Euclidean distance.
yule -- the Yule dissimilarity (boolean).
References
----------
.. [Sta07] "Statistics toolbox." API Reference Documentation. The MathWorks.
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/.
Accessed October 1, 2007.
.. [Mti07] "Hierarchical clustering." API Reference Documentation.
The Wolfram Research, Inc.
http://reference.wolfram.com/mathematica/HierarchicalClustering/tutorial/HierarchicalClustering.html.
Accessed October 1, 2007.
.. [Gow69] Gower, JC and Ross, GJS. "Minimum Spanning Trees and Single Linkage
Cluster Analysis." Applied Statistics. 18(1): pp. 54--64. 1969.
.. [War63] Ward Jr, JH. "Hierarchical grouping to optimize an objective
function." Journal of the American Statistical Association. 58(301):
pp. 236--44. 1963.
.. [Joh66] Johnson, SC. "Hierarchical clustering schemes." Psychometrika.
32(2): pp. 241--54. 1966.
.. [Sne62] Sneath, PH and Sokal, RR. "Numerical taxonomy." Nature. 193: pp.
855--60. 1962.
.. [Bat95] Batagelj, V. "Comparing resemblance measures." Journal of
Classification. 12: pp. 73--90. 1995.
.. [Sok58] Sokal, RR and Michener, CD. "A statistical method for evaluating
systematic relationships." Scientific Bulletins. 38(22):
pp. 1409--38. 1958.
.. [Ede79] Edelbrock, C. "Mixture model tests of hierarchical clustering
algorithms: the problem of classifying everybody." Multivariate
Behavioral Research. 14: pp. 367--84. 1979.
.. [Jai88] Jain, A., and Dubes, R., "Algorithms for Clustering Data."
Prentice-Hall. Englewood Cliffs, NJ. 1988.
.. [Fis36] Fisher, RA "The use of multiple measurements in taxonomic
problems." Annals of Eugenics, 7(2): 179-188. 1936
Copyright Notice
----------------
Copyright (C) Damian Eads, 2007-2008. New BSD License.
"""
import warnings
import numpy as np
from numpy.linalg import norm
import _distance_wrap
def _copy_array_if_base_present(a):
"""
Copies the array if its base points to a parent array.
"""
if a.base is not None:
return a.copy()
elif np.issubsctype(a, np.float32):
return np.array(a, dtype=np.double)
else:
return a
def _copy_arrays_if_base_present(T):
"""
Accepts a tuple of arrays T. Copies the array T[i] if its base array
points to an actual array. Otherwise, the reference is just copied.
This is useful if the arrays are being passed to a C function that
does not do proper striding.
"""
l = [_copy_array_if_base_present(a) for a in T]
return l
def _convert_to_bool(X):
if X.dtype != np.bool:
X = np.bool_(X)
if not X.flags.contiguous:
X = X.copy()
return X
def _convert_to_double(X):
if X.dtype != np.double:
X = np.double(X)
if not X.flags.contiguous:
X = X.copy()
return X
def _validate_vector(u, dtype=None):
# XXX Is order='c' really necessary?
u = np.asarray(u, dtype=dtype, order='c').squeeze()
# Ensure values such as u=1 and u=[1] still return 1-D arrays.
u = np.atleast_1d(u)
if u.ndim > 1:
raise ValueError("Input vector should be 1-D.")
return u
def minkowski(u, v, p):
r"""
Computes the Minkowski distance between two vectors ``u`` and ``v``,
defined as
.. math::
{||u-v||}_p = (\sum{|u_i - v_i|^p})^{1/p}.
Parameters
----------
u : ndarray
An n-dimensional vector.
v : ndarray
An n-dimensional vector.
p : int
The order of the norm of the difference :math:`{||u-v||}_p`.
Returns
-------
d : double
The Minkowski distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
if p < 1:
raise ValueError("p must be at least 1")
dist = norm(u - v, ord=p)
return dist
def wminkowski(u, v, p, w):
r"""
Computes the weighted Minkowski distance between two vectors ``u``
and ``v``, defined as
.. math::
\left(\sum{(w_i |u_i - v_i|^p)}\right)^{1/p}.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
p : int
The order of the norm of the difference :math:`{||u-v||}_p`.
w : ndarray
The weight vector.
Returns
-------
d : double
The Minkowski distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
w = _validate_vector(w)
if p < 1:
raise ValueError("p must be at least 1")
dist = norm(w * (u - v), ord=p)
return dist
def euclidean(u, v):
"""
Computes the Euclidean distance between two n-vectors ``u`` and ``v``,
which is defined as
.. math::
{||u-v||}_2
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Euclidean distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
dist = norm(u - v)
return dist
def sqeuclidean(u, v):
"""
Computes the squared Euclidean distance between two n-vectors u and v,
which is defined as
.. math::
{||u-v||}_2^2.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The squared Euclidean distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
dist = ((u - v) ** 2).sum()
return dist
def cosine(u, v):
r"""
Computes the Cosine distance between two n-vectors u and v, which
is defined as
.. math::
1 - \frac{uv^T}
{||u||_2 ||v||_2}.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Cosine distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
dist = 1.0 - np.dot(u, v) / (norm(u) * norm(v))
return dist
def correlation(u, v):
r"""
Computes the correlation distance between two n-vectors ``u`` and
``v``, which is defined as
.. math::
1 - frac{(u - \bar{u}){(v - \bar{v})}^T}
{{||(u - \bar{u})||}_2 {||(v - \bar{v})||}_2^T}
where :math:`\bar{u}` is the mean of a vectors elements and ``n``
is the common dimensionality of ``u`` and ``v``.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The correlation distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
umu = u.mean()
vmu = v.mean()
um = u - umu
vm = v - vmu
dist = 1.0 - np.dot(um, vm) / (norm(um) * norm(vm))
return dist
def hamming(u, v):
r"""
Computes the Hamming distance between two n-vectors ``u`` and
``v``, which is simply the proportion of disagreeing components in
``u`` and ``v``. If ``u`` and ``v`` are boolean vectors, the Hamming
distance is
.. math::
\frac{c_{01} + c_{10}}{n}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Hamming distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
return (u != v).mean()
def jaccard(u, v):
"""
Computes the Jaccard-Needham dissimilarity between two boolean
n-vectors u and v, which is
.. math::
\frac{c_{TF} + c_{FT}}
{c_{TT} + c_{FT} + c_{TF}}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Jaccard distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
dist = (np.double(np.bitwise_and((u != v),
np.bitwise_or(u != 0, v != 0)).sum())
/ np.double(np.bitwise_or(u != 0, v != 0).sum()))
return dist
def kulsinski(u, v):
"""
Computes the Kulsinski dissimilarity between two boolean n-vectors
u and v, which is defined as
.. math::
\frac{c_{TF} + c_{FT} - c_{TT} + n}
{c_{FT} + c_{TF} + n}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Kulsinski distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
n = float(len(u))
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v)
return (ntf + nft - ntt + n) / (ntf + nft + n)
def seuclidean(u, v, V):
"""
Returns the standardized Euclidean distance between two n-vectors
``u`` and ``v``. ``V`` is an n-dimensional vector of component
variances. It is usually computed among a larger collection
vectors.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
V : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The standardized Euclidean distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
V = _validate_vector(V, dtype=np.float64)
if V.shape[0] != u.shape[0] or u.shape[0] != v.shape[0]:
raise TypeError('V must be a 1-D array of the same dimension '
'as u and v.')
return np.sqrt(((u - v) ** 2 / V).sum())
def cityblock(u, v):
"""
Computes the Manhattan distance between two n-vectors u and v,
which is defined as
.. math::
\\sum_i {\\left| u_i - v_i \\right|}.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The City Block distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
return abs(u - v).sum()
def mahalanobis(u, v, VI):
r"""
Computes the Mahalanobis distance between two n-vectors ``u`` and ``v``,
which is defiend as
.. math::
(u-v)V^{-1}(u-v)^T
where ``VI`` is the inverse covariance matrix :math:`V^{-1}`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Mahalanobis distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
VI = np.atleast_2d(VI)
delta = u - v
m = np.dot(np.dot(delta, VI), delta)
return np.sqrt(m)
def chebyshev(u, v):
r"""
Computes the Chebyshev distance between two n-vectors u and v,
which is defined as
.. math::
\max_i {|u_i-v_i|}.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Chebyshev distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
return max(abs(u - v))
def braycurtis(u, v):
r"""
Computes the Bray-Curtis distance between two n-vectors ``u`` and
``v``, which is defined as
.. math::
\sum{|u_i-v_i|} / \sum{|u_i+v_i|}.
The Bray-Curtis distance is in the range [0, 1] if all coordinates are
positive, and is undefined if the inputs are of length zero.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Bray-Curtis distance between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v, dtype=np.float64)
return abs(u - v).sum() / abs(u + v).sum()
def canberra(u, v):
r"""
Computes the Canberra distance between two n-vectors u and v,
which is defined as
.. math::
\sum_u \frac{|u_i-v_i|}
{(|u_i|+|v_i|)}.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Canberra distance between vectors ``u`` and ``v``.
Notes
-----
Whe u[i] and v[i] are 0 for given i, then the fraction 0/0 = 0 is used in
the calculation.
"""
u = _validate_vector(u)
v = _validate_vector(v, dtype=np.float64)
olderr = np.seterr(invalid='ignore')
try:
d = np.nansum(abs(u - v) / (abs(u) + abs(v)))
finally:
np.seterr(**olderr)
return d
def _nbool_correspond_all(u, v):
if u.dtype != v.dtype:
raise TypeError("Arrays being compared must be of the same data type.")
if u.dtype == np.int or u.dtype == np.float_ or u.dtype == np.double:
not_u = 1.0 - u
not_v = 1.0 - v
nff = (not_u * not_v).sum()
nft = (not_u * v).sum()
ntf = (u * not_v).sum()
ntt = (u * v).sum()
elif u.dtype == np.bool:
not_u = ~u
not_v = ~v
nff = (not_u & not_v).sum()
nft = (not_u & v).sum()
ntf = (u & not_v).sum()
ntt = (u & v).sum()
else:
raise TypeError("Arrays being compared have unknown type.")
return (nff, nft, ntf, ntt)
def _nbool_correspond_ft_tf(u, v):
if u.dtype == np.int or u.dtype == np.float_ or u.dtype == np.double:
not_u = 1.0 - u
not_v = 1.0 - v
nft = (not_u * v).sum()
ntf = (u * not_v).sum()
else:
not_u = ~u
not_v = ~v
nft = (not_u & v).sum()
ntf = (u & not_v).sum()
return (nft, ntf)
def yule(u, v):
r"""
Computes the Yule dissimilarity between two boolean n-vectors u and v,
which is defined as
.. math::
\frac{R}{c_{TT} + c_{FF} + \frac{R}{2}}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2.0 * (c_{TF} + c_{FT})`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Yule dissimilarity between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v)
return float(2.0 * ntf * nft) / float(ntt * nff + ntf * nft)
def matching(u, v):
r"""
Computes the Matching dissimilarity between two boolean n-vectors
u and v, which is defined as
.. math::
\frac{c_{TF} + c_{FT}}{n}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Matching dissimilarity between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
(nft, ntf) = _nbool_correspond_ft_tf(u, v)
return float(nft + ntf) / float(len(u))
def dice(u, v):
r"""
Computes the Dice dissimilarity between two boolean n-vectors
``u`` and ``v``, which is
.. math::
\frac{c_{TF} + c_{FT}}
{2c_{TT} + c_{FT} + c_{TF}}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Dice dissimilarity between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
if u.dtype == np.bool:
ntt = (u & v).sum()
else:
ntt = (u * v).sum()
(nft, ntf) = _nbool_correspond_ft_tf(u, v)
return float(ntf + nft) / float(2.0 * ntt + ntf + nft)
def rogerstanimoto(u, v):
r"""
Computes the Rogers-Tanimoto dissimilarity between two boolean
n-vectors ``u`` and ``v``, which is defined as
.. math::
\frac{R}
{c_{TT} + c_{FF} + R}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Rogers-Tanimoto dissimilarity between vectors
`u` and `v`.
"""
u = _validate_vector(u)
v = _validate_vector(v)
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v)
return float(2.0 * (ntf + nft)) / float(ntt + nff + (2.0 * (ntf + nft)))
def russellrao(u, v):
r"""
Computes the Russell-Rao dissimilarity between two boolean n-vectors
``u`` and ``v``, which is defined as
.. math::
\frac{n - c_{TT}}
{n}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Russell-Rao dissimilarity between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
if u.dtype == np.bool:
ntt = (u & v).sum()
else:
ntt = (u * v).sum()
return float(len(u) - ntt) / float(len(u))
def sokalmichener(u, v):
r"""
Computes the Sokal-Michener dissimilarity between two boolean vectors
``u`` and ``v``, which is defined as
.. math::
\frac{R}
{S + R}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
:math:`S = c_{FF} + c_{TT}`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Sokal-Michener dissimilarity between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
if u.dtype == np.bool:
ntt = (u & v).sum()
nff = (~u & ~v).sum()
else:
ntt = (u * v).sum()
nff = ((1.0 - u) * (1.0 - v)).sum()
(nft, ntf) = _nbool_correspond_ft_tf(u, v)
return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft))
def sokalsneath(u, v):
r"""
Computes the Sokal-Sneath dissimilarity between two boolean vectors
``u`` and ``v``,
.. math::
\frac{R}
{c_{TT} + R}
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
Parameters
----------
u : ndarray
An :math:`n`-dimensional vector.
v : ndarray
An :math:`n`-dimensional vector.
Returns
-------
d : double
The Sokal-Sneath dissimilarity between vectors ``u`` and ``v``.
"""
u = _validate_vector(u)
v = _validate_vector(v)
if u.dtype == np.bool:
ntt = (u & v).sum()
else:
ntt = (u * v).sum()
(nft, ntf) = _nbool_correspond_ft_tf(u, v)
denom = ntt + 2.0 * (ntf + nft)
if denom == 0:
raise ValueError('Sokal-Sneath dissimilarity is not defined for '
'vectors that are entirely false.')
return float(2.0 * (ntf + nft)) / denom
def pdist(X, metric='euclidean', p=2, w=None, V=None, VI=None):
r"""
Computes the pairwise distances between m original observations in
n-dimensional space. Returns a condensed distance matrix Y. For
each :math:`i` and :math:`j` (where :math:`i<j<n`), the
metric ``dist(u=X[i], v=X[j])`` is computed and stored in the
:math:`ij`th entry.
See ``squareform`` for information on how to calculate the index of
this entry or to convert the condensed distance matrix to a
redundant square matrix.
The following are common calling conventions.
1. ``Y = pdist(X, 'euclidean')``
Computes the distance between m points using Euclidean distance
(2-norm) as the distance metric between the points. The points
are arranged as m n-dimensional row vectors in the matrix X.
2. ``Y = pdist(X, 'minkowski', p)``
Computes the distances using the Minkowski distance
:math:`||u-v||_p` (p-norm) where :math:`p \geq 1`.
3. ``Y = pdist(X, 'cityblock')``
Computes the city block or Manhattan distance between the
points.
4. ``Y = pdist(X, 'seuclidean', V=None)``
Computes the standardized Euclidean distance. The standardized
Euclidean distance between two n-vectors ``u`` and ``v`` is
.. math::
\sqrt{\sum {(u_i-v_i)^2 / V[x_i]}}.
V is the variance vector; V[i] is the variance computed over all
the i'th components of the points. If not passed, it is
automatically computed.
5. ``Y = pdist(X, 'sqeuclidean')``
Computes the squared Euclidean distance :math:`||u-v||_2^2` between
the vectors.
6. ``Y = pdist(X, 'cosine')``
Computes the cosine distance between vectors u and v,
.. math::
1 - \frac{uv^T}
{{|u|}_2 {|v|}_2}
where |*|_2 is the 2 norm of its argument *.
7. ``Y = pdist(X, 'correlation')``
Computes the correlation distance between vectors u and v. This is
.. math::
1 - \frac{(u - \bar{u})(v - \bar{v})^T}
{{|(u - \bar{u})|}{|(v - \bar{v})|}^T}
where :math:`\bar{v}` is the mean of the elements of vector v.
8. ``Y = pdist(X, 'hamming')``
Computes the normalized Hamming distance, or the proportion of
those vector elements between two n-vectors ``u`` and ``v``
which disagree. To save memory, the matrix ``X`` can be of type
boolean.
9. ``Y = pdist(X, 'jaccard')``
Computes the Jaccard distance between the points. Given two
vectors, ``u`` and ``v``, the Jaccard distance is the
proportion of those elements ``u[i]`` and ``v[i]`` that
disagree where at least one of them is non-zero.
10. ``Y = pdist(X, 'chebyshev')``
Computes the Chebyshev distance between the points. The
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
maximum norm-1 distance between their respective elements. More
precisely, the distance is given by
.. math::
d(u,v) = \max_i {|u_i-v_i|}.
11. ``Y = pdist(X, 'canberra')``
Computes the Canberra distance between the points. The
Canberra distance between two points ``u`` and ``v`` is
.. math::
d(u,v) = \sum_u \frac{|u_i-v_i|}
{(|u_i|+|v_i|)}
12. ``Y = pdist(X, 'braycurtis')``
Computes the Bray-Curtis distance between the points. The
Bray-Curtis distance between two points ``u`` and ``v`` is
.. math::
d(u,v) = \frac{\sum_i {u_i-v_i}}
{\sum_i {u_i+v_i}}
13. ``Y = pdist(X, 'mahalanobis', VI=None)``
Computes the Mahalanobis distance between the points. The
Mahalanobis distance between two points ``u`` and ``v`` is
:math:`(u-v)(1/V)(u-v)^T` where :math:`(1/V)` (the ``VI``
variable) is the inverse covariance. If ``VI`` is not None,
``VI`` will be used as the inverse covariance matrix.
14. ``Y = pdist(X, 'yule')``
Computes the Yule distance between each pair of boolean
vectors. (see yule function documentation)
15. ``Y = pdist(X, 'matching')``
Computes the matching distance between each pair of boolean
vectors. (see matching function documentation)
16. ``Y = pdist(X, 'dice')``
Computes the Dice distance between each pair of boolean
vectors. (see dice function documentation)
17. ``Y = pdist(X, 'kulsinski')``
Computes the Kulsinski distance between each pair of
boolean vectors. (see kulsinski function documentation)
18. ``Y = pdist(X, 'rogerstanimoto')``
Computes the Rogers-Tanimoto distance between each pair of
boolean vectors. (see rogerstanimoto function documentation)
19. ``Y = pdist(X, 'russellrao')``
Computes the Russell-Rao distance between each pair of
boolean vectors. (see russellrao function documentation)
20. ``Y = pdist(X, 'sokalmichener')``
Computes the Sokal-Michener distance between each pair of
boolean vectors. (see sokalmichener function documentation)
21. ``Y = pdist(X, 'sokalsneath')``
Computes the Sokal-Sneath distance between each pair of
boolean vectors. (see sokalsneath function documentation)
22. ``Y = pdist(X, 'wminkowski')``
Computes the weighted Minkowski distance between each pair of
vectors. (see wminkowski function documentation)
23. ``Y = pdist(X, f)``
Computes the distance between all pairs of vectors in X
using the user supplied 2-arity function f. For example,
Euclidean distance between the vectors could be computed
as follows::
dm = pdist(X, (lambda u, v: np.sqrt(((u-v)*(u-v).T).sum())))
Note that you should avoid passing a reference to one of
the distance functions defined in this library. For example,::
dm = pdist(X, sokalsneath)
would calculate the pair-wise distances between the vectors in
X using the Python function sokalsneath. This would result in
sokalsneath being called :math:`{n \choose 2}` times, which
is inefficient. Instead, the optimized C version is more
efficient, and we call it using the following syntax.::
dm = pdist(X, 'sokalsneath')
Parameters
----------
X : ndarray
An m by n array of m original observations in an
n-dimensional space.
metric : string or function
The distance metric to use. The distance function can
be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
'jaccard', 'kulsinski', 'mahalanobis', 'matching',
'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule'.
w : ndarray
The weight vector (for weighted Minkowski).
p : double
The p-norm to apply (for Minkowski, weighted and unweighted)
V : ndarray
The variance vector (for standardized Euclidean).
VI : ndarray
The inverse of the covariance matrix (for Mahalanobis).
Returns
-------
Y : ndarray
A condensed distance matrix.
See Also
--------
squareform : converts between condensed distance matrices and
square distance matrices.
"""
# 21. Y = pdist(X, 'test_Y')
#
# Computes the distance between all pairs of vectors in X
# using the distance metric Y but with a more succinct,
# verifiable, but less efficient implementation.
X = np.asarray(X, order='c')
# The C code doesn't do striding.
[X] = _copy_arrays_if_base_present([_convert_to_double(X)])
s = X.shape
if len(s) != 2:
raise ValueError('A 2-dimensional array must be passed.')
m, n = s
dm = np.zeros((m * (m - 1) / 2,), dtype=np.double)
wmink_names = ['wminkowski', 'wmi', 'wm', 'wpnorm']
if w is None and (metric == wminkowski or metric in wmink_names):
raise ValueError('weighted minkowski requires a weight '
'vector `w` to be given.')
if callable(metric):
if metric == minkowski:
def dfun(u, v):
return minkowski(u, v, p)
elif metric == wminkowski:
def dfun(u, v):
return wminkowski(u, v, p, w)
elif metric == seuclidean:
def dfun(u, v):
return seuclidean(u, v, V)
elif metric == mahalanobis:
def dfun(u, v):
return mahalanobis(u, v, V)
else:
dfun = metric
k = 0
for i in xrange(0, m - 1):
for j in xrange(i + 1, m):
dm[k] = dfun(X[i], X[j])
k = k + 1
elif isinstance(metric, basestring):
mstr = metric.lower()
#if X.dtype != np.double and \
# (mstr != 'hamming' and mstr != 'jaccard'):
# TypeError('A double array must be passed.')
if mstr in set(['euclidean', 'euclid', 'eu', 'e']):
_distance_wrap.pdist_euclidean_wrap(_convert_to_double(X), dm)
elif mstr in set(['sqeuclidean', 'sqe', 'sqeuclid']):
_distance_wrap.pdist_euclidean_wrap(_convert_to_double(X), dm)
dm = dm ** 2.0
elif mstr in set(['cityblock', 'cblock', 'cb', 'c']):
_distance_wrap.pdist_city_block_wrap(X, dm)
elif mstr in set(['hamming', 'hamm', 'ha', 'h']):
if X.dtype == np.bool:
_distance_wrap.pdist_hamming_bool_wrap(_convert_to_bool(X), dm)
else:
_distance_wrap.pdist_hamming_wrap(_convert_to_double(X), dm)
elif mstr in set(['jaccard', 'jacc', 'ja', 'j']):
if X.dtype == np.bool:
_distance_wrap.pdist_jaccard_bool_wrap(_convert_to_bool(X), dm)
else:
_distance_wrap.pdist_jaccard_wrap(_convert_to_double(X), dm)
elif mstr in set(['chebychev', 'chebyshev', 'cheby', 'cheb', 'ch']):
_distance_wrap.pdist_chebyshev_wrap(_convert_to_double(X), dm)
elif mstr in set(['minkowski', 'mi', 'm']):
_distance_wrap.pdist_minkowski_wrap(_convert_to_double(X), dm, p)
elif mstr in wmink_names:
_distance_wrap.pdist_weighted_minkowski_wrap(_convert_to_double(X),
dm, p, np.asarray(w))
elif mstr in set(['seuclidean', 'se', 's']):
if V is not None:
V = np.asarray(V, order='c')
if type(V) != np.ndarray:
raise TypeError('Variance vector V must be a numpy array')
if V.dtype != np.double:
raise TypeError('Variance vector V must contain doubles.')
if len(V.shape) != 1:
raise ValueError('Variance vector V must '
'be one-dimensional.')
if V.shape[0] != n:
raise ValueError('Variance vector V must be of the same '
'dimension as the vectors on which the distances '
'are computed.')
# The C code doesn't do striding.
[VV] = _copy_arrays_if_base_present([_convert_to_double(V)])
else:
VV = np.var(X, axis=0, ddof=1)
_distance_wrap.pdist_seuclidean_wrap(_convert_to_double(X), VV, dm)
# Need to test whether vectorized cosine works better.
# Find out: Is there a dot subtraction operator so I can
# subtract matrices in a similar way to multiplying them?
# Need to get rid of as much unnecessary C code as possible.
elif mstr in set(['cosine', 'cos']):
norms = np.sqrt(np.sum(X * X, axis=1))
_distance_wrap.pdist_cosine_wrap(_convert_to_double(X), dm, norms)
elif mstr in set(['old_cosine', 'old_cos']):
norms = np.sqrt(np.sum(X * X, axis=1))
nV = norms.reshape(m, 1)
# The numerator u * v
nm = np.dot(X, X.T)
# The denom. ||u||*||v||
de = np.dot(nV, nV.T)
dm = 1.0 - (nm / de)
dm[xrange(0, m), xrange(0, m)] = 0.0
dm = squareform(dm)
elif mstr in set(['correlation', 'co']):
X2 = X - X.mean(1)[:, np.newaxis]
#X2 = X - np.matlib.repmat(np.mean(X, axis=1).reshape(m, 1), 1, n)
norms = np.sqrt(np.sum(X2 * X2, axis=1))
_distance_wrap.pdist_cosine_wrap(_convert_to_double(X2),
_convert_to_double(dm),
_convert_to_double(norms))
elif mstr in set(['mahalanobis', 'mahal', 'mah']):
if VI is not None:
VI = _convert_to_double(np.asarray(VI, order='c'))
if type(VI) != np.ndarray:
raise TypeError('VI must be a numpy array.')
if VI.dtype != np.double:
raise TypeError('The array must contain 64-bit floats.')
[VI] = _copy_arrays_if_base_present([VI])
else:
V = np.cov(X.T)
VI = _convert_to_double(np.linalg.inv(V).T.copy())
# (u-v)V^(-1)(u-v)^T
_distance_wrap.pdist_mahalanobis_wrap(_convert_to_double(X),
VI, dm)
elif mstr == 'canberra':
_distance_wrap.pdist_canberra_wrap(_convert_to_double(X), dm)
elif mstr == 'braycurtis':
_distance_wrap.pdist_bray_curtis_wrap(_convert_to_double(X), dm)
elif mstr == 'yule':
_distance_wrap.pdist_yule_bool_wrap(_convert_to_bool(X), dm)
elif mstr == 'matching':
_distance_wrap.pdist_matching_bool_wrap(_convert_to_bool(X), dm)
elif mstr == 'kulsinski':
_distance_wrap.pdist_kulsinski_bool_wrap(_convert_to_bool(X), dm)
elif mstr == 'dice':
_distance_wrap.pdist_dice_bool_wrap(_convert_to_bool(X), dm)
elif mstr == 'rogerstanimoto':
_distance_wrap.pdist_rogerstanimoto_bool_wrap(_convert_to_bool(X),
dm)
elif mstr == 'russellrao':
_distance_wrap.pdist_russellrao_bool_wrap(_convert_to_bool(X), dm)
elif mstr == 'sokalmichener':
_distance_wrap.pdist_sokalmichener_bool_wrap(_convert_to_bool(X),
dm)
elif mstr == 'sokalsneath':
_distance_wrap.pdist_sokalsneath_bool_wrap(_convert_to_bool(X), dm)
elif metric == 'test_euclidean':
dm = pdist(X, euclidean)
elif metric == 'test_sqeuclidean':
if V is None:
V = np.var(X, axis=0, ddof=1)
else:
V = np.asarray(V, order='c')
dm = pdist(X, lambda u, v: seuclidean(u, v, V))
elif metric == 'test_braycurtis':
dm = pdist(X, braycurtis)
elif metric == 'test_mahalanobis':
if VI is None:
V = np.cov(X.T)
VI = np.linalg.inv(V)
else:
VI = np.asarray(VI, order='c')
[VI] = _copy_arrays_if_base_present([VI])
# (u-v)V^(-1)(u-v)^T
dm = pdist(X, (lambda u, v: mahalanobis(u, v, VI)))
elif metric == 'test_canberra':
dm = pdist(X, canberra)
elif metric == 'test_cityblock':
dm = pdist(X, cityblock)
elif metric == 'test_minkowski':
dm = pdist(X, minkowski, p=p)
elif metric == 'test_wminkowski':
dm = pdist(X, wminkowski, p=p, w=w)
elif metric == 'test_cosine':
dm = pdist(X, cosine)
elif metric == 'test_correlation':
dm = pdist(X, correlation)
elif metric == 'test_hamming':
dm = pdist(X, hamming)
elif metric == 'test_jaccard':
dm = pdist(X, jaccard)
elif metric == 'test_chebyshev' or metric == 'test_chebychev':
dm = pdist(X, chebyshev)
elif metric == 'test_yule':
dm = pdist(X, yule)
elif metric == 'test_matching':
dm = pdist(X, matching)
elif metric == 'test_dice':
dm = pdist(X, dice)
elif metric == 'test_kulsinski':
dm = pdist(X, kulsinski)
elif metric == 'test_rogerstanimoto':
dm = pdist(X, rogerstanimoto)
elif metric == 'test_russellrao':
dm = pdist(X, russellrao)
elif metric == 'test_sokalsneath':
dm = pdist(X, sokalsneath)
elif metric == 'test_sokalmichener':
dm = pdist(X, sokalmichener)
else:
raise ValueError('Unknown Distance Metric: %s' % mstr)
else:
raise TypeError('2nd argument metric must be a string identifier '
'or a function.')
return dm
def squareform(X, force="no", checks=True):
r"""
Converts a vector-form distance vector to a square-form distance
matrix, and vice-versa.
Parameters
----------
X : ndarray
Either a condensed or redundant distance matrix.
Returns
-------
Y : ndarray
If a condensed distance matrix is passed, a redundant
one is returned, or if a redundant one is passed, a
condensed distance matrix is returned.
force : string
As with MATLAB(TM), if force is equal to 'tovector' or
'tomatrix', the input will be treated as a distance matrix
or distance vector respectively.
checks : bool
If ``checks`` is set to ``False``, no checks will be made
for matrix symmetry nor zero diagonals. This is useful if
it is known that ``X - X.T1`` is small and ``diag(X)`` is
close to zero. These values are ignored any way so they do
not disrupt the squareform transformation.
Calling Conventions
-------------------
1. v = squareform(X)
Given a square d by d symmetric distance matrix ``X``,
``v=squareform(X)`` returns a :math:`d*(d-1)/2` (or
`${n \choose 2}$`) sized vector v.
v[{n \choose 2}-{n-i \choose 2} + (j-i-1)] is the distance
between points i and j. If X is non-square or asymmetric, an error
is returned.
X = squareform(v)
Given a d*d(-1)/2 sized v for some integer d>=2 encoding distances
as described, X=squareform(v) returns a d by d distance matrix X. The
X[i, j] and X[j, i] values are set to
v[{n \choose 2}-{n-i \choose 2} + (j-u-1)] and all
diagonal elements are zero.
"""
X = _convert_to_double(np.asarray(X, order='c'))
if not np.issubsctype(X, np.double):
raise TypeError('A double array must be passed.')
s = X.shape
if force.lower() == 'tomatrix':
if len(s) != 1:
raise ValueError("Forcing 'tomatrix' but input X is not a "
"distance vector.")
elif force.lower() == 'tovector':
if len(s) != 2:
raise ValueError("Forcing 'tovector' but input X is not a "
"distance matrix.")
# X = squareform(v)
if len(s) == 1:
if X.shape[0] == 0:
return np.zeros((1, 1), dtype=np.double)
# Grab the closest value to the square root of the number
# of elements times 2 to see if the number of elements
# is indeed a binomial coefficient.
d = int(np.ceil(np.sqrt(X.shape[0] * 2)))
# Check that v is of valid dimensions.
if d * (d - 1) / 2 != int(s[0]):
raise ValueError('Incompatible vector size. It must be a binomial '
'coefficient n choose 2 for some integer n >= 2.')
# Allocate memory for the distance matrix.
M = np.zeros((d, d), dtype=np.double)
# Since the C code does not support striding using strides.
# The dimensions are used instead.
[X] = _copy_arrays_if_base_present([X])
# Fill in the values of the distance matrix.
_distance_wrap.to_squareform_from_vector_wrap(M, X)
# Return the distance matrix.
M = M + M.transpose()
return M
elif len(s) == 2:
if s[0] != s[1]:
raise ValueError('The matrix argument must be square.')
if checks:
is_valid_dm(X, throw=True, name='X')
# One-side of the dimensions is set here.
d = s[0]
if d <= 1:
return np.array([], dtype=np.double)
# Create a vector.
v = np.zeros(((d * (d - 1) / 2),), dtype=np.double)
# Since the C code does not support striding using strides.
# The dimensions are used instead.
[X] = _copy_arrays_if_base_present([X])
# Convert the vector to squareform.
_distance_wrap.to_vector_from_squareform_wrap(X, v)
return v
else:
raise ValueError(('The first argument must be one or two dimensional '
'array. A %d-dimensional array is not '
'permitted') % len(s))
def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False):
"""
Returns True if the variable D passed is a valid distance matrix.
Distance matrices must be 2-dimensional numpy arrays containing
doubles. They must have a zero-diagonal, and they must be symmetric.
Parameters
----------
D : ndarray
The candidate object to test for validity.
tol : double
The distance matrix should be symmetric. tol is the maximum
difference between the :math:`ij`th entry and the
:math:`ji`th entry for the distance metric to be
considered symmetric.
throw : bool
An exception is thrown if the distance matrix passed is not
valid.
name : string
the name of the variable to checked. This is useful if
throw is set to ``True`` so the offending variable can be
identified in the exception message when an exception is
thrown.
warning : bool
Instead of throwing an exception, a warning message is
raised.
Returns
-------
Returns ``True`` if the variable ``D`` passed is a valid
distance matrix. Small numerical differences in ``D`` and
``D.T`` and non-zeroness of the diagonal are ignored if they are
within the tolerance specified by ``tol``.
"""
D = np.asarray(D, order='c')
valid = True
try:
s = D.shape
if D.dtype != np.double:
if name:
raise TypeError(('Distance matrix \'%s\' must contain doubles '
'(double).') % name)
else:
raise TypeError('Distance matrix must contain doubles '
'(double).')
if len(D.shape) != 2:
if name:
raise ValueError(('Distance matrix \'%s\' must have shape=2 '
'(i.e. be two-dimensional).') % name)
else:
raise ValueError('Distance matrix must have shape=2 (i.e. '
'be two-dimensional).')
if tol == 0.0:
if not (D == D.T).all():
if name:
raise ValueError(('Distance matrix \'%s\' must be '
'symmetric.') % name)
else:
raise ValueError('Distance matrix must be symmetric.')
if not (D[xrange(0, s[0]), xrange(0, s[0])] == 0).all():
if name:
raise ValueError(('Distance matrix \'%s\' diagonal must '
'be zero.') % name)
else:
raise ValueError('Distance matrix diagonal must be zero.')
else:
if not (D - D.T <= tol).all():
if name:
raise ValueError(('Distance matrix \'%s\' must be '
'symmetric within tolerance %d.')
% (name, tol))
else:
raise ValueError('Distance matrix must be symmetric within'
' tolerance %5.5f.' % tol)
if not (D[xrange(0, s[0]), xrange(0, s[0])] <= tol).all():
if name:
raise ValueError(('Distance matrix \'%s\' diagonal must be'
' close to zero within tolerance %5.5f.')
% (name, tol))
else:
raise ValueError(('Distance matrix \'%s\' diagonal must be'
' close to zero within tolerance %5.5f.')
% tol)
except Exception, e:
if throw:
raise
if warning:
warnings.warn(str(e))
valid = False
return valid
def is_valid_y(y, warning=False, throw=False, name=None):
r"""
Returns ``True`` if the variable ``y`` passed is a valid condensed
distance matrix. Condensed distance matrices must be 1-dimensional
numpy arrays containing doubles. Their length must be a binomial
coefficient :math:`{n \choose 2}` for some positive integer n.
Parameters
----------
y : ndarray
The condensed distance matrix.
warning : bool, optional
Invokes a warning if the variable passed is not a valid
condensed distance matrix. The warning message explains why
the distance matrix is not valid. 'name' is used when
referencing the offending variable.
throws : throw, optional
Throws an exception if the variable passed is not a valid
condensed distance matrix.
name : bool, optional
Used when referencing the offending variable in the
warning or exception message.
"""
y = np.asarray(y, order='c')
valid = True
try:
if type(y) != np.ndarray:
if name:
raise TypeError(('\'%s\' passed as a condensed distance '
'matrix is not a numpy array.') % name)
else:
raise TypeError('Variable is not a numpy array.')
if y.dtype != np.double:
if name:
raise TypeError(('Condensed distance matrix \'%s\' must '
'contain doubles (double).') % name)
else:
raise TypeError('Condensed distance matrix must contain '
'doubles (double).')
if len(y.shape) != 1:
if name:
raise ValueError(('Condensed distance matrix \'%s\' must '
'have shape=1 (i.e. be one-dimensional).')
% name)
else:
raise ValueError('Condensed distance matrix must have shape=1 '
'(i.e. be one-dimensional).')
n = y.shape[0]
d = int(np.ceil(np.sqrt(n * 2)))
if (d * (d - 1) / 2) != n:
if name:
raise ValueError(('Length n of condensed distance matrix '
'\'%s\' must be a binomial coefficient, i.e.'
'there must be a k such that '
'(k \choose 2)=n)!') % name)
else:
raise ValueError('Length n of condensed distance matrix must '
'be a binomial coefficient, i.e. there must '
'be a k such that (k \choose 2)=n)!')
except Exception, e:
if throw:
raise
if warning:
warnings.warn(str(e))
valid = False
return valid
def num_obs_dm(d):
"""
Returns the number of original observations that correspond to a
square, redundant distance matrix ``D``.
Parameters
----------
d : ndarray
The target distance matrix.
Returns
-------
numobs : int
The number of observations in the redundant distance matrix.
"""
d = np.asarray(d, order='c')
is_valid_dm(d, tol=np.inf, throw=True, name='d')
return d.shape[0]
def num_obs_y(Y):
"""
Returns the number of original observations that correspond to a
condensed distance matrix ``Y``.
Parameters
----------
Y : ndarray
The number of original observations in the condensed
observation ``Y``.
Returns
-------
n : int
The number of observations in the condensed distance matrix
passed.
"""
Y = np.asarray(Y, order='c')
is_valid_y(Y, throw=True, name='Y')
k = Y.shape[0]
if k == 0:
raise ValueError("The number of observations cannot be determined on "
"an empty distance matrix.")
d = int(np.ceil(np.sqrt(k * 2)))
if (d * (d - 1) / 2) != k:
raise ValueError("Invalid condensed distance matrix passed. Must be "
"some k where k=(n choose 2) for some n >= 2.")
return d
def cdist(XA, XB, metric='euclidean', p=2, V=None, VI=None, w=None):
r"""
Computes distance between each pair of observation vectors in the
Cartesian product of two collections of vectors. ``XA`` is a
:math:`m_A` by :math:`n` array while ``XB`` is a :math:`m_B` by
:math:`n` array. A :math:`m_A` by :math:`m_B` array is
returned. An exception is thrown if ``XA`` and ``XB`` do not have
the same number of columns.
A rectangular distance matrix ``Y`` is returned. For each :math:`i`
and :math:`j`, the metric ``dist(u=XA[i], v=XB[j])`` is computed
and stored in the :math:`ij` th entry.
The following are common calling conventions:
1. ``Y = cdist(XA, XB, 'euclidean')``
Computes the distance between :math:`m` points using
Euclidean distance (2-norm) as the distance metric between the
points. The points are arranged as :math:`m`
:math:`n`-dimensional row vectors in the matrix X.
2. ``Y = cdist(XA, XB, 'minkowski', p)``
Computes the distances using the Minkowski distance
:math:`||u-v||_p` (:math:`p`-norm) where :math:`p \geq 1`.
3. ``Y = cdist(XA, XB, 'cityblock')``
Computes the city block or Manhattan distance between the
points.
4. ``Y = cdist(XA, XB, 'seuclidean', V=None)``
Computes the standardized Euclidean distance. The standardized
Euclidean distance between two n-vectors ``u`` and ``v`` is
.. math::
\sqrt{\sum {(u_i-v_i)^2 / V[x_i]}}.
V is the variance vector; V[i] is the variance computed over all
the i'th components of the points. If not passed, it is
automatically computed.
5. ``Y = cdist(XA, XB, 'sqeuclidean')``
Computes the squared Euclidean distance :math:`||u-v||_2^2` between
the vectors.
6. ``Y = cdist(XA, XB, 'cosine')``
Computes the cosine distance between vectors u and v,
.. math::
\frac{1 - uv^T}
{{|u|}_2 {|v|}_2}
where :math:`|*|_2` is the 2-norm of its argument *.
7. ``Y = cdist(XA, XB, 'correlation')``
Computes the correlation distance between vectors u and v. This is
.. math::
\frac{1 - (u - n{|u|}_1){(v - n{|v|}_1)}^T}
{{|(u - n{|u|}_1)|}_2 {|(v - n{|v|}_1)|}^T}
where :math:`|*|_1` is the Manhattan (or 1-norm) of its
argument, and :math:`n` is the common dimensionality of the
vectors.
8. ``Y = cdist(XA, XB, 'hamming')``
Computes the normalized Hamming distance, or the proportion of
those vector elements between two n-vectors ``u`` and ``v``
which disagree. To save memory, the matrix ``X`` can be of type
boolean.
9. ``Y = cdist(XA, XB, 'jaccard')``
Computes the Jaccard distance between the points. Given two
vectors, ``u`` and ``v``, the Jaccard distance is the
proportion of those elements ``u[i]`` and ``v[i]`` that
disagree where at least one of them is non-zero.
10. ``Y = cdist(XA, XB, 'chebyshev')``
Computes the Chebyshev distance between the points. The
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
maximum norm-1 distance between their respective elements. More
precisely, the distance is given by
.. math::
d(u,v) = \max_i {|u_i-v_i|}.
11. ``Y = cdist(XA, XB, 'canberra')``
Computes the Canberra distance between the points. The
Canberra distance between two points ``u`` and ``v`` is
.. math::
d(u,v) = \sum_u \frac{|u_i-v_i|}
{(|u_i|+|v_i|)}
12. ``Y = cdist(XA, XB, 'braycurtis')``
Computes the Bray-Curtis distance between the points. The
Bray-Curtis distance between two points ``u`` and ``v`` is
.. math::
d(u,v) = \frac{\sum_i (u_i-v_i)}
{\sum_i (u_i+v_i)}
13. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)``
Computes the Mahalanobis distance between the points. The
Mahalanobis distance between two points ``u`` and ``v`` is
:math:`(u-v)(1/V)(u-v)^T` where :math:`(1/V)` (the ``VI``
variable) is the inverse covariance. If ``VI`` is not None,
``VI`` will be used as the inverse covariance matrix.
14. ``Y = cdist(XA, XB, 'yule')``
Computes the Yule distance between the boolean
vectors. (see yule function documentation)
15. ``Y = cdist(XA, XB, 'matching')``
Computes the matching distance between the boolean
vectors. (see matching function documentation)
16. ``Y = cdist(XA, XB, 'dice')``
Computes the Dice distance between the boolean vectors. (see
dice function documentation)
17. ``Y = cdist(XA, XB, 'kulsinski')``
Computes the Kulsinski distance between the boolean
vectors. (see kulsinski function documentation)
18. ``Y = cdist(XA, XB, 'rogerstanimoto')``
Computes the Rogers-Tanimoto distance between the boolean
vectors. (see rogerstanimoto function documentation)
19. ``Y = cdist(XA, XB, 'russellrao')``
Computes the Russell-Rao distance between the boolean
vectors. (see russellrao function documentation)
20. ``Y = cdist(XA, XB, 'sokalmichener')``
Computes the Sokal-Michener distance between the boolean
vectors. (see sokalmichener function documentation)
21. ``Y = cdist(XA, XB, 'sokalsneath')``
Computes the Sokal-Sneath distance between the vectors. (see
sokalsneath function documentation)
22. ``Y = cdist(XA, XB, 'wminkowski')``
Computes the weighted Minkowski distance between the
vectors. (see sokalsneath function documentation)
23. ``Y = cdist(XA, XB, f)``
Computes the distance between all pairs of vectors in X
using the user supplied 2-arity function f. For example,
Euclidean distance between the vectors could be computed
as follows::
dm = cdist(XA, XB, (lambda u, v: np.sqrt(((u-v)*(u-v).T).sum())))
Note that you should avoid passing a reference to one of
the distance functions defined in this library. For example,::
dm = cdist(XA, XB, sokalsneath)
would calculate the pair-wise distances between the vectors in
X using the Python function sokalsneath. This would result in
sokalsneath being called :math:`{n \choose 2}` times, which
is inefficient. Instead, the optimized C version is more
efficient, and we call it using the following syntax.::
dm = cdist(XA, XB, 'sokalsneath')
Parameters
----------
XA : ndarray
An :math:`m_A` by :math:`n` array of :math:`m_A`
original observations in an :math:`n`-dimensional space.
XB : ndarray
An :math:`m_B` by :math:`n` array of :math:`m_B`
original observations in an :math:`n`-dimensional space.
metric : string or function
The distance metric to use. The distance function can
be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
'jaccard', 'kulsinski', 'mahalanobis', 'matching',
'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean',
'sokalmichener', 'sokalsneath', 'sqeuclidean', 'wminkowski',
'yule'.
w : ndarray
The weight vector (for weighted Minkowski).
p : double
The p-norm to apply (for Minkowski, weighted and unweighted)
V : ndarray
The variance vector (for standardized Euclidean).
VI : ndarray
The inverse of the covariance matrix (for Mahalanobis).
Returns
-------
Y : ndarray
A :math:`m_A` by :math:`m_B` distance matrix.
"""
# 21. Y = cdist(XA, XB, 'test_Y')
#
# Computes the distance between all pairs of vectors in X
# using the distance metric Y but with a more succint,
# verifiable, but less efficient implementation.
XA = np.asarray(XA, order='c')
XB = np.asarray(XB, order='c')
#if np.issubsctype(X, np.floating) and not np.issubsctype(X, np.double):
# raise TypeError('Floating point arrays must be 64-bit (got %r).' %
# (X.dtype.type,))
# The C code doesn't do striding.
[XA] = _copy_arrays_if_base_present([_convert_to_double(XA)])
[XB] = _copy_arrays_if_base_present([_convert_to_double(XB)])
s = XA.shape
sB = XB.shape
if len(s) != 2:
raise ValueError('XA must be a 2-dimensional array.')
if len(sB) != 2:
raise ValueError('XB must be a 2-dimensional array.')
if s[1] != sB[1]:
raise ValueError('XA and XB must have the same number of columns '
'(i.e. feature dimension.)')
mA = s[0]
mB = sB[0]
n = s[1]
dm = np.zeros((mA, mB), dtype=np.double)
if callable(metric):
if metric == minkowski:
for i in xrange(0, mA):
for j in xrange(0, mB):
dm[i, j] = minkowski(XA[i, :], XB[j, :], p)
elif metric == wminkowski:
for i in xrange(0, mA):
for j in xrange(0, mB):
dm[i, j] = wminkowski(XA[i, :], XB[j, :], p, w)
elif metric == seuclidean:
for i in xrange(0, mA):
for j in xrange(0, mB):
dm[i, j] = seuclidean(XA[i, :], XB[j, :], V)
elif metric == mahalanobis:
for i in xrange(0, mA):
for j in xrange(0, mB):
dm[i, j] = mahalanobis(XA[i, :], XB[j, :], V)
else:
for i in xrange(0, mA):
for j in xrange(0, mB):
dm[i, j] = metric(XA[i, :], XB[j, :])
elif isinstance(metric, basestring):
mstr = metric.lower()
#if XA.dtype != np.double and \
# (mstr != 'hamming' and mstr != 'jaccard'):
# TypeError('A double array must be passed.')
if mstr in set(['euclidean', 'euclid', 'eu', 'e']):
_distance_wrap.cdist_euclidean_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm)
elif mstr in set(['sqeuclidean', 'sqe', 'sqeuclid']):
_distance_wrap.cdist_euclidean_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm)
dm **= 2.0
elif mstr in set(['cityblock', 'cblock', 'cb', 'c']):
_distance_wrap.cdist_city_block_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm)
elif mstr in set(['hamming', 'hamm', 'ha', 'h']):
if XA.dtype == np.bool:
_distance_wrap.cdist_hamming_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB),
dm)
else:
_distance_wrap.cdist_hamming_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm)
elif mstr in set(['jaccard', 'jacc', 'ja', 'j']):
if XA.dtype == np.bool:
_distance_wrap.cdist_jaccard_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB),
dm)
else:
_distance_wrap.cdist_jaccard_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm)
elif mstr in set(['chebychev', 'chebyshev', 'cheby', 'cheb', 'ch']):
_distance_wrap.cdist_chebyshev_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm)
elif mstr in set(['minkowski', 'mi', 'm', 'pnorm']):
_distance_wrap.cdist_minkowski_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm, p)
elif mstr in set(['wminkowski', 'wmi', 'wm', 'wpnorm']):
_distance_wrap.cdist_weighted_minkowski_wrap(_convert_to_double(XA),
_convert_to_double(XB),
dm, p,
_convert_to_double(w))
elif mstr in set(['seuclidean', 'se', 's']):
if V is not None:
V = np.asarray(V, order='c')
if type(V) != np.ndarray:
raise TypeError('Variance vector V must be a numpy array')
if V.dtype != np.double:
raise TypeError('Variance vector V must contain doubles.')
if len(V.shape) != 1:
raise ValueError('Variance vector V must be '
'one-dimensional.')
if V.shape[0] != n:
raise ValueError('Variance vector V must be of the same '
'dimension as the vectors on which the '
'distances are computed.')
# The C code doesn't do striding.
[VV] = _copy_arrays_if_base_present([_convert_to_double(V)])
else:
X = np.vstack([XA, XB])
VV = np.var(X, axis=0, ddof=1)
X = None
del X
_distance_wrap.cdist_seuclidean_wrap(_convert_to_double(XA),
_convert_to_double(XB), VV, dm)
# Need to test whether vectorized cosine works better.
# Find out: Is there a dot subtraction operator so I can
# subtract matrices in a similar way to multiplying them?
# Need to get rid of as much unnecessary C code as possible.
elif mstr in set(['cosine', 'cos']):
normsA = np.sqrt(np.sum(XA * XA, axis=1))
normsB = np.sqrt(np.sum(XB * XB, axis=1))
_distance_wrap.cdist_cosine_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm,
normsA,
normsB)
elif mstr in set(['correlation', 'co']):
XA2 = XA - XA.mean(1)[:, np.newaxis]
XB2 = XB - XB.mean(1)[:, np.newaxis]
#X2 = X - np.matlib.repmat(np.mean(X, axis=1).reshape(m, 1), 1, n)
normsA = np.sqrt(np.sum(XA2 * XA2, axis=1))
normsB = np.sqrt(np.sum(XB2 * XB2, axis=1))
_distance_wrap.cdist_cosine_wrap(_convert_to_double(XA2),
_convert_to_double(XB2),
_convert_to_double(dm),
_convert_to_double(normsA),
_convert_to_double(normsB))
elif mstr in set(['mahalanobis', 'mahal', 'mah']):
if VI is not None:
VI = _convert_to_double(np.asarray(VI, order='c'))
if type(VI) != np.ndarray:
raise TypeError('VI must be a numpy array.')
if VI.dtype != np.double:
raise TypeError('The array must contain 64-bit floats.')
[VI] = _copy_arrays_if_base_present([VI])
else:
X = np.vstack([XA, XB])
V = np.cov(X.T)
X = None
del X
VI = _convert_to_double(np.linalg.inv(V).T.copy())
# (u-v)V^(-1)(u-v)^T
_distance_wrap.cdist_mahalanobis_wrap(_convert_to_double(XA),
_convert_to_double(XB),
VI, dm)
elif mstr == 'canberra':
_distance_wrap.cdist_canberra_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm)
elif mstr == 'braycurtis':
_distance_wrap.cdist_bray_curtis_wrap(_convert_to_double(XA),
_convert_to_double(XB), dm)
elif mstr == 'yule':
_distance_wrap.cdist_yule_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB), dm)
elif mstr == 'matching':
_distance_wrap.cdist_matching_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB), dm)
elif mstr == 'kulsinski':
_distance_wrap.cdist_kulsinski_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB), dm)
elif mstr == 'dice':
_distance_wrap.cdist_dice_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB), dm)
elif mstr == 'rogerstanimoto':
_distance_wrap.cdist_rogerstanimoto_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB),
dm)
elif mstr == 'russellrao':
_distance_wrap.cdist_russellrao_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB), dm)
elif mstr == 'sokalmichener':
_distance_wrap.cdist_sokalmichener_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB),
dm)
elif mstr == 'sokalsneath':
_distance_wrap.cdist_sokalsneath_bool_wrap(_convert_to_bool(XA),
_convert_to_bool(XB),
dm)
elif metric == 'test_euclidean':
dm = cdist(XA, XB, euclidean)
elif metric == 'test_seuclidean':
if V is None:
V = np.var(np.vstack([XA, XB]), axis=0, ddof=1)
else:
V = np.asarray(V, order='c')
dm = cdist(XA, XB, lambda u, v: seuclidean(u, v, V))
elif metric == 'test_sqeuclidean':
dm = cdist(XA, XB, lambda u, v: sqeuclidean(u, v))
elif metric == 'test_braycurtis':
dm = cdist(XA, XB, braycurtis)
elif metric == 'test_mahalanobis':
if VI is None:
X = np.vstack([XA, XB])
V = np.cov(X.T)
VI = np.linalg.inv(V)
X = None
del X
else:
VI = np.asarray(VI, order='c')
[VI] = _copy_arrays_if_base_present([VI])
# (u-v)V^(-1)(u-v)^T
dm = cdist(XA, XB, (lambda u, v: mahalanobis(u, v, VI)))
elif metric == 'test_canberra':
dm = cdist(XA, XB, canberra)
elif metric == 'test_cityblock':
dm = cdist(XA, XB, cityblock)
elif metric == 'test_minkowski':
dm = cdist(XA, XB, minkowski, p=p)
elif metric == 'test_wminkowski':
dm = cdist(XA, XB, wminkowski, p=p, w=w)
elif metric == 'test_cosine':
dm = cdist(XA, XB, cosine)
elif metric == 'test_correlation':
dm = cdist(XA, XB, correlation)
elif metric == 'test_hamming':
dm = cdist(XA, XB, hamming)
elif metric == 'test_jaccard':
dm = cdist(XA, XB, jaccard)
elif metric == 'test_chebyshev' or metric == 'test_chebychev':
dm = cdist(XA, XB, chebyshev)
elif metric == 'test_yule':
dm = cdist(XA, XB, yule)
elif metric == 'test_matching':
dm = cdist(XA, XB, matching)
elif metric == 'test_dice':
dm = cdist(XA, XB, dice)
elif metric == 'test_kulsinski':
dm = cdist(XA, XB, kulsinski)
elif metric == 'test_rogerstanimoto':
dm = cdist(XA, XB, rogerstanimoto)
elif metric == 'test_russellrao':
dm = cdist(XA, XB, russellrao)
elif metric == 'test_sokalsneath':
dm = cdist(XA, XB, sokalsneath)
elif metric == 'test_sokalmichener':
dm = cdist(XA, XB, sokalmichener)
else:
raise ValueError('Unknown Distance Metric: %s' % mstr)
else:
raise TypeError('2nd argument metric must be a string identifier '
'or a function.')
return dm
|