File: test_qhull.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (228 lines) | stat: -rw-r--r-- 7,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import numpy as np
from numpy.testing import assert_equal, assert_almost_equal, run_module_suite

import scipy.spatial.qhull as qhull

class TestUtilities(object):
    """
    Check that utility functions work.

    """

    def test_find_simplex(self):
        # Simple check that simplex finding works
        points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
        tri = qhull.Delaunay(points)

        # +---+
        # |\ 0|
        # | \ |
        # |1 \|
        # +---+

        assert_equal(tri.vertices, [[3, 1, 2], [3, 1, 0]])

        for p in [(0.25, 0.25, 1),
                  (0.75, 0.75, 0),
                  (0.3, 0.2, 1)]:
            i = tri.find_simplex(p[:2])
            assert_equal(i, p[2], err_msg='%r' % (p,))
            j = qhull.tsearch(tri, p[:2])
            assert_equal(i, j)

    def test_plane_distance(self):
        # Compare plane distance from hyperplane equations obtained from Qhull
        # to manually computed plane equations
        x = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127),
                      (0.99440079, 0.45182168)], dtype=np.double)
        p = np.array([0.99966555, 0.15685619], dtype=np.double)

        tri = qhull.Delaunay(x)

        z = tri.lift_points(x)
        pz = tri.lift_points(p)

        dist = tri.plane_distance(p)

        for j, v in enumerate(tri.vertices):
            x1 = z[v[0]]
            x2 = z[v[1]]
            x3 = z[v[2]]

            n = np.cross(x1 - x3, x2 - x3)
            n /= np.sqrt(np.dot(n, n))
            n *= -np.sign(n[2])

            d = np.dot(n, pz - x3)

            assert_almost_equal(dist[j], d)

    def test_convex_hull(self):
        # Simple check that the convex hull seems to works
        points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
        tri = qhull.Delaunay(points)

        # +---+
        # |\ 0|
        # | \ |
        # |1 \|
        # +---+

        assert_equal(tri.convex_hull, [[1, 2], [3, 2], [1, 0], [3, 0]])

class TestRidgeIter2D(object):

    def _check_ridges(self, tri, vertex, expected):
        got = [(v1, v2) for v1, v2, i, t in qhull.RidgeIter2D(tri, vertex)]
        got.sort()
        expected.sort()
        assert_equal(got, expected, err_msg="%d: %r != %r" % (
            vertex, got, expected))

    def test_triangle(self):
        points = np.array([(0,0), (0,1), (1,0)], dtype=np.double)
        tri = qhull.Delaunay(points)

        # 1
        # +
        # |\
        # | \
        # |0 \
        # +---+
        # 0   2

        self._check_ridges(tri, 0, [(0, 1), (0, 2)])
        self._check_ridges(tri, 1, [(1, 0), (1, 2)])
        self._check_ridges(tri, 2, [(2, 0), (2, 1)])

    def test_rectangle(self):
        points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
        tri = qhull.Delaunay(points)

        # 1   2
        # +---+
        # |\ 0|
        # | \ |
        # |1 \|
        # +---+
        # 0   3

        self._check_ridges(tri, 0, [(0, 1), (0, 3)])
        self._check_ridges(tri, 1, [(1, 0), (1, 3), (1, 2)])
        self._check_ridges(tri, 2, [(2, 1), (2, 3)])
        self._check_ridges(tri, 3, [(3, 0), (3, 1), (3, 2)])

    def test_complicated(self):
        points = np.array([(0,0), (0,1), (1,1), (1,0),
                           (0.5, 0.5), (0.9, 0.5)], dtype=np.double)
        tri = qhull.Delaunay(points)

        #  1                       2
        #  +-----------------------+
        #  | \-                 /-||
        #  |   \-      0      /-  /|
        #  |     \-         /-   / |
        #  |       \-     /-    |  |
        #  |         \-4/-  4  5/  |
        #  |   1       +-------+  3|
        #  |         -/  \- 5   \  |
        #  |      --/      \--   \ |
        #  |   --/     2      \- | |
        #  | -/                 \-\|
        #  +-----------------------+
        #  0                       3
        #

        self._check_ridges(tri, 0, [(0, 1), (0, 3), (0, 4)])
        self._check_ridges(tri, 1, [(1, 0), (1, 2), (1, 4)])
        self._check_ridges(tri, 2, [(2, 1), (2, 4), (2, 5), (2, 3)])
        self._check_ridges(tri, 3, [(3, 0), (3, 4), (3, 5), (3, 2)])
        self._check_ridges(tri, 4, [(4, 0), (4, 1), (4, 2), (4, 3), (4, 5)])
        self._check_ridges(tri, 5, [(5, 2), (5, 3), (5, 4)])


class TestTriangulation(object):
    """
    Check that triangulation works.

    """

    def test_nd_simplex(self):
        # simple smoke test: triangulate a n-dimensional simplex
        for nd in xrange(2, 8):
            points = np.zeros((nd+1, nd))
            for j in xrange(nd):
                points[j,j] = 1.0
            points[-1,:] = 1.0

            tri = qhull.Delaunay(points)

            tri.vertices.sort()

            assert_equal(tri.vertices, np.arange(nd+1, dtype=np.int)[None,:])
            assert_equal(tri.neighbors, -1 + np.zeros((nd+1), dtype=np.int)[None,:])

    def test_2d_square(self):
        # simple smoke test: 2d square
        points = np.array([(0,0), (0,1), (1,1), (1,0)], dtype=np.double)
        tri = qhull.Delaunay(points)

        assert_equal(tri.vertices, [[3, 1, 2], [3, 1, 0]])
        assert_equal(tri.neighbors, [[-1, -1, 1], [-1, -1, 0]])

    def test_duplicate_points(self):
        x  = np.array([0, 1, 0, 1], dtype=np.float64)
        y  = np.array([0, 0, 1, 1], dtype=np.float64)

        xp = np.r_[x, x]
        yp = np.r_[y, y]

        # shouldn't fail on duplicate points
        tri = qhull.Delaunay(np.c_[x, y])
        tri2 = qhull.Delaunay(np.c_[xp, yp])

    pathological_data_1 = np.array([
        [-3.14,-3.14], [-3.14,-2.36], [-3.14,-1.57], [-3.14,-0.79],
        [-3.14,0.0], [-3.14,0.79], [-3.14,1.57], [-3.14,2.36],
        [-3.14,3.14], [-2.36,-3.14], [-2.36,-2.36], [-2.36,-1.57],
        [-2.36,-0.79], [-2.36,0.0], [-2.36,0.79], [-2.36,1.57],
        [-2.36,2.36], [-2.36,3.14], [-1.57,-0.79], [-1.57,0.79],
        [-1.57,-1.57], [-1.57,0.0], [-1.57,1.57], [-1.57,-3.14],
        [-1.57,-2.36], [-1.57,2.36], [-1.57,3.14], [-0.79,-1.57],
        [-0.79,1.57], [-0.79,-3.14], [-0.79,-2.36], [-0.79,-0.79],
        [-0.79,0.0], [-0.79,0.79], [-0.79,2.36], [-0.79,3.14],
        [0.0,-3.14], [0.0,-2.36], [0.0,-1.57], [0.0,-0.79], [0.0,0.0],
        [0.0,0.79], [0.0,1.57], [0.0,2.36], [0.0,3.14], [0.79,-3.14],
        [0.79,-2.36], [0.79,-0.79], [0.79,0.0], [0.79,0.79],
        [0.79,2.36], [0.79,3.14], [0.79,-1.57], [0.79,1.57],
        [1.57,-3.14], [1.57,-2.36], [1.57,2.36], [1.57,3.14],
        [1.57,-1.57], [1.57,0.0], [1.57,1.57], [1.57,-0.79],
        [1.57,0.79], [2.36,-3.14], [2.36,-2.36], [2.36,-1.57],
        [2.36,-0.79], [2.36,0.0], [2.36,0.79], [2.36,1.57],
        [2.36,2.36], [2.36,3.14], [3.14,-3.14], [3.14,-2.36],
        [3.14,-1.57], [3.14,-0.79], [3.14,0.0], [3.14,0.79],
        [3.14,1.57], [3.14,2.36], [3.14,3.14],
    ])

    pathological_data_2 = np.array([
        [-1, -1                          ], [-1, 0], [-1, 1],
        [ 0, -1                          ], [ 0, 0], [ 0, 1],
        [ 1, -1 - np.finfo(np.float_).eps], [ 1, 0], [ 1, 1],
    ])

    def test_pathological(self):
        # both should succeed
        tri = qhull.Delaunay(self.pathological_data_1)
        assert_equal(tri.points[tri.vertices].max(),
                     self.pathological_data_1.max())
        assert_equal(tri.points[tri.vertices].min(),
                     self.pathological_data_1.min())

        tri = qhull.Delaunay(self.pathological_data_2)
        assert_equal(tri.points[tri.vertices].max(),
                     self.pathological_data_2.max())
        assert_equal(tri.points[tri.vertices].min(),
                     self.pathological_data_2.min())

if __name__ == "__main__":
    run_module_suite()