1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
SUBROUTINE cdfchi(which,p,q,x,df,status,bound)
C**********************************************************************
C
C SUBROUTINE CDFCHI( WHICH, P, Q, X, DF, STATUS, BOUND )
C Cumulative Distribution Function
C CHI-Square distribution
C
C
C Function
C
C
C Calculates any one parameter of the chi-square
C distribution given values for the others.
C
C
C Arguments
C
C
C WHICH --> Integer indicating which of the next three argument
C values is to be calculated from the others.
C Legal range: 1..3
C iwhich = 1 : Calculate P and Q from X and DF
C iwhich = 2 : Calculate X from P,Q and DF
C iwhich = 3 : Calculate DF from P,Q and X
C INTEGER WHICH
C
C P <--> The integral from 0 to X of the chi-square
C distribution.
C Input range: [0, 1].
C DOUBLE PRECISION P
C
C Q <--> 1-P.
C Input range: (0, 1].
C P + Q = 1.0.
C DOUBLE PRECISION Q
C
C X <--> Upper limit of integration of the non-central
C chi-square distribution.
C Input range: [0, +infinity).
C Search range: [0,1E100]
C DOUBLE PRECISION X
C
C DF <--> Degrees of freedom of the
C chi-square distribution.
C Input range: (0, +infinity).
C Search range: [ 1E-100, 1E100]
C DOUBLE PRECISION DF
C
C STATUS <-- 0 if calculation completed correctly
C -I if input parameter number I is out of range
C 1 if answer appears to be lower than lowest
C search bound
C 2 if answer appears to be higher than greatest
C search bound
C 3 if P + Q .ne. 1
C 10 indicates error returned from cumgam. See
C references in cdfgam
C INTEGER STATUS
C
C BOUND <-- Undefined if STATUS is 0
C
C Bound exceeded by parameter number I if STATUS
C is negative.
C
C Lower search bound if STATUS is 1.
C
C Upper search bound if STATUS is 2.
C
C
C Method
C
C
C Formula 26.4.19 of Abramowitz and Stegun, Handbook of
C Mathematical Functions (1966) is used to reduce the chisqure
C distribution to the incomplete distribution.
C
C Computation of other parameters involve a seach for a value that
C produces the desired value of P. The search relies on the
C monotinicity of P with the other parameter.
C
C**********************************************************************
C .. Parameters ..
DOUBLE PRECISION tol
PARAMETER (tol=1.0D-8)
DOUBLE PRECISION atol
PARAMETER (atol=1.0D-50)
DOUBLE PRECISION zero,inf
PARAMETER (zero=1.0D-100,inf=1.0D100)
C ..
C .. Scalar Arguments ..
DOUBLE PRECISION bound,df,p,q,x
INTEGER status,which
C ..
C .. Local Scalars ..
DOUBLE PRECISION ccum,cum,fx,porq,pq
LOGICAL qhi,qleft,qporq
C ..
C .. External Functions ..
DOUBLE PRECISION spmpar
EXTERNAL spmpar
C ..
C .. External Subroutines ..
EXTERNAL cumchi,dinvr,dstinv
C ..
C .. Intrinsic Functions ..
INTRINSIC abs
C ..
IF (.NOT. ((which.LT.1).OR. (which.GT.3))) GO TO 30
IF (.NOT. (which.LT.1)) GO TO 10
bound = 1.0D0
GO TO 20
10 bound = 3.0D0
20 status = -1
RETURN
30 IF (which.EQ.1) GO TO 70
IF (.NOT. ((p.LT.0.0D0).OR. (p.GT.1.0D0))) GO TO 60
IF (.NOT. (p.LT.0.0D0)) GO TO 40
bound = 0.0D0
GO TO 50
40 bound = 1.0D0
50 status = -2
RETURN
60 CONTINUE
70 IF (which.EQ.1) GO TO 110
IF (.NOT. ((q.LE.0.0D0).OR. (q.GT.1.0D0))) GO TO 100
IF (.NOT. (q.LE.0.0D0)) GO TO 80
bound = 0.0D0
GO TO 90
80 bound = 1.0D0
90 status = -3
RETURN
100 CONTINUE
110 IF (which.EQ.2) GO TO 130
IF (.NOT. (x.LT.0.0D0)) GO TO 120
bound = 0.0D0
status = -4
RETURN
120 CONTINUE
130 IF (which.EQ.3) GO TO 150
IF (.NOT. (df.LE.0.0D0)) GO TO 140
bound = 0.0D0
status = -5
RETURN
140 CONTINUE
150 IF (which.EQ.1) GO TO 190
pq = p + q
IF (.NOT. (abs(((pq)-0.5D0)-0.5D0).GT.
+ (3.0D0*spmpar(1)))) GO TO 180
IF (.NOT. (pq.LT.0.0D0)) GO TO 160
bound = 0.0D0
GO TO 170
160 bound = 1.0D0
170 status = 3
RETURN
180 CONTINUE
190 IF (which.EQ.1) GO TO 220
qporq = p .LE. q
IF (.NOT. (qporq)) GO TO 200
porq = p
GO TO 210
200 porq = q
210 CONTINUE
220 IF ((1).EQ. (which)) THEN
status = 0
CALL cumchi(x,df,p,q)
IF (porq.GT.1.5D0) THEN
status = 10
RETURN
END IF
ELSE IF ((2).EQ. (which)) THEN
x = 5.0D0
CALL dstinv(0.0D0,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,x,fx,qleft,qhi)
230 IF (.NOT. (status.EQ.1)) GO TO 270
CALL cumchi(x,df,cum,ccum)
IF (.NOT. (qporq)) GO TO 240
fx = cum - p
GO TO 250
240 fx = ccum - q
250 IF (.NOT. ((fx+porq).GT.1.5D0)) GO TO 260
status = 10
RETURN
260 CALL dinvr(status,x,fx,qleft,qhi)
GO TO 230
270 IF (.NOT. (status.EQ.-1)) GO TO 300
IF (.NOT. (qleft)) GO TO 280
status = 1
bound = 0.0D0
GO TO 290
280 status = 2
bound = inf
290 CONTINUE
300 CONTINUE
ELSE IF ((3).EQ. (which)) THEN
df = 5.0D0
CALL dstinv(zero,inf,0.5D0,0.5D0,5.0D0,atol,tol)
status = 0
CALL dinvr(status,df,fx,qleft,qhi)
310 IF (.NOT. (status.EQ.1)) GO TO 350
CALL cumchi(x,df,cum,ccum)
IF (.NOT. (qporq)) GO TO 320
fx = cum - p
GO TO 330
320 fx = ccum - q
330 IF (.NOT. ((fx+porq).GT.1.5D0)) GO TO 340
status = 10
RETURN
340 CALL dinvr(status,df,fx,qleft,qhi)
GO TO 310
350 IF (.NOT. (status.EQ.-1)) GO TO 380
IF (.NOT. (qleft)) GO TO 360
status = 1
bound = zero
GO TO 370
360 status = 2
bound = inf
370 CONTINUE
380 END IF
RETURN
END
|