1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
/* ellik.c
*
* Incomplete elliptic integral of the first kind
*
*
*
* SYNOPSIS:
*
* double phi, m, y, ellik();
*
* y = ellik( phi, m );
*
*
*
* DESCRIPTION:
*
* Approximates the integral
*
*
*
* phi
* -
* | |
* | dt
* F(phi | m) = | ------------------
* | 2
* | | sqrt( 1 - m sin t )
* -
* 0
*
* of amplitude phi and modulus m, using the arithmetic -
* geometric mean algorithm.
*
*
*
*
* ACCURACY:
*
* Tested at random points with m in [0, 1] and phi as indicated.
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -10,10 200000 7.4e-16 1.0e-16
*
*
*/
/*
Cephes Math Library Release 2.0: April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
/* Incomplete elliptic integral of first kind */
#include "mconf.h"
extern double PI, PIO2, MACHEP, MAXNUM;
double ellik( phi, m )
double phi, m;
{
double a, b, c, e, temp, t, K;
int d, mod, sign, npio2;
if( m == 0.0 )
return( phi );
a = 1.0 - m;
if( a == 0.0 )
{
if( fabs(phi) >= PIO2 )
{
mtherr( "ellik", SING );
return( MAXNUM );
}
return( log( tan( (PIO2 + phi)/2.0 ) ) );
}
npio2 = floor( phi/PIO2 );
if( npio2 & 1 )
npio2 += 1;
if( npio2 )
{
K = ellpk( a );
phi = phi - npio2 * PIO2;
}
else
K = 0.0;
if( phi < 0.0 )
{
phi = -phi;
sign = -1;
}
else
sign = 0;
b = sqrt(a);
t = tan( phi );
if( fabs(t) > 10.0 )
{
/* Transform the amplitude */
e = 1.0/(b*t);
/* ... but avoid multiple recursions. */
if( fabs(e) < 10.0 )
{
e = atan(e);
if( npio2 == 0 )
K = ellpk( a );
temp = K - ellik( e, m );
goto done;
}
}
a = 1.0;
c = sqrt(m);
d = 1;
mod = 0;
while( fabs(c/a) > MACHEP )
{
temp = b/a;
phi = phi + atan(t*temp) + mod * PI;
mod = (phi + PIO2)/PI;
t = t * ( 1.0 + temp )/( 1.0 - temp * t * t );
c = ( a - b )/2.0;
temp = sqrt( a * b );
a = ( a + b )/2.0;
b = temp;
d += d;
}
temp = (atan(t) + mod * PI)/(d * a);
done:
if( sign < 0 )
temp = -temp;
temp += npio2 * K;
return( temp );
}
|