1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
/* euclid.c
*
* Rational arithmetic routines
*
*
*
* SYNOPSIS:
*
*
* typedef struct
* {
* double n; numerator
* double d; denominator
* }fract;
*
* radd( a, b, c ) c = b + a
* rsub( a, b, c ) c = b - a
* rmul( a, b, c ) c = b * a
* rdiv( a, b, c ) c = b / a
* euclid( &n, &d ) Reduce n/d to lowest terms,
* return greatest common divisor.
*
* Arguments of the routines are pointers to the structures.
* The double precision numbers are assumed, without checking,
* to be integer valued. Overflow conditions are reported.
*/
#include "mconf.h"
extern double MACHEP;
#define BIG (1.0/MACHEP)
double euclid(double* num, double* den );
typedef struct
{
double n; /* numerator */
double d; /* denominator */
} fract;
/* Add fractions. */
static void radd(fract*,fract*,fract*);
static void rsub(fract*,fract*,fract*);
static void rmul(fract*,fract*,fract*);
static void rdiv(fract*,fract*,fract*);
void radd( f1, f2, f3 )
fract *f1, *f2, *f3;
{
double gcd, d1, d2, gcn, n1, n2;
n1 = f1->n;
d1 = f1->d;
n2 = f2->n;
d2 = f2->d;
if( n1 == 0.0 )
{
f3->n = n2;
f3->d = d2;
return;
}
if( n2 == 0.0 )
{
f3->n = n1;
f3->d = d1;
return;
}
gcd = euclid( &d1, &d2 ); /* common divisors of denominators */
gcn = euclid( &n1, &n2 ); /* common divisors of numerators */
/* Note, factoring the numerators
* makes overflow slightly less likely.
*/
f3->n = ( n1 * d2 + n2 * d1) * gcn;
f3->d = d1 * d2 * gcd;
euclid( &f3->n, &f3->d );
}
/* Subtract fractions. */
void rsub( f1, f2, f3 )
fract *f1, *f2, *f3;
{
double gcd, d1, d2, gcn, n1, n2;
n1 = f1->n;
d1 = f1->d;
n2 = f2->n;
d2 = f2->d;
if( n1 == 0.0 )
{
f3->n = n2;
f3->d = d2;
return;
}
if( n2 == 0.0 )
{
f3->n = -n1;
f3->d = d1;
return;
}
gcd = euclid( &d1, &d2 );
gcn = euclid( &n1, &n2 );
f3->n = (n2 * d1 - n1 * d2) * gcn;
f3->d = d1 * d2 * gcd;
euclid( &f3->n, &f3->d );
}
/* Multiply fractions. */
void rmul( ff1, ff2, ff3 )
fract *ff1, *ff2, *ff3;
{
double d1, d2, n1, n2;
n1 = ff1->n;
d1 = ff1->d;
n2 = ff2->n;
d2 = ff2->d;
if( (n1 == 0.0) || (n2 == 0.0) )
{
ff3->n = 0.0;
ff3->d = 1.0;
return;
}
euclid( &n1, &d2 ); /* cross cancel common divisors */
euclid( &n2, &d1 );
ff3->n = n1 * n2;
ff3->d = d1 * d2;
/* Report overflow. */
if( (fabs(ff3->n) >= BIG) || (fabs(ff3->d) >= BIG) )
{
mtherr( "rmul", OVERFLOW );
return;
}
/* euclid( &ff3->n, &ff3->d );*/
}
/* Divide fractions. */
void rdiv( ff1, ff2, ff3 )
fract *ff1, *ff2, *ff3;
{
double d1, d2, n1, n2;
n1 = ff1->d; /* Invert ff1, then multiply */
d1 = ff1->n;
if( d1 < 0.0 )
{ /* keep denominator positive */
n1 = -n1;
d1 = -d1;
}
n2 = ff2->n;
d2 = ff2->d;
if( (n1 == 0.0) || (n2 == 0.0) )
{
ff3->n = 0.0;
ff3->d = 1.0;
return;
}
euclid( &n1, &d2 ); /* cross cancel any common divisors */
euclid( &n2, &d1 );
ff3->n = n1 * n2;
ff3->d = d1 * d2;
/* Report overflow. */
if( (fabs(ff3->n) >= BIG) || (fabs(ff3->d) >= BIG) )
{
mtherr( "rdiv", OVERFLOW );
return;
}
/* euclid( &ff3->n, &ff3->d );*/
}
/* Euclidean algorithm
* reduces fraction to lowest terms,
* returns greatest common divisor.
*/
double euclid( num, den )
double *num, *den;
{
double n, d, q, r;
n = *num; /* Numerator. */
d = *den; /* Denominator. */
/* Make numbers positive, locally. */
if( n < 0.0 )
n = -n;
if( d < 0.0 )
d = -d;
/* Abort if numbers are too big for integer arithmetic. */
if( (n >= BIG) || (d >= BIG) )
{
mtherr( "euclid", OVERFLOW );
return(1.0);
}
/* Divide by zero, gcd = 1. */
if(d == 0.0)
return( 1.0 );
/* Zero. Return 0/1, gcd = denominator. */
if(n == 0.0)
{
/*
if( *den < 0.0 )
*den = -1.0;
else
*den = 1.0;
*/
*den = 1.0;
return( d );
}
while( d > 0.5 )
{
/* Find integer part of n divided by d. */
q = floor( n/d );
/* Find remainder after dividing n by d. */
r = n - d * q;
/* The next fraction is d/r. */
n = d;
d = r;
}
if( n < 0.0 )
mtherr( "euclid", UNDERFLOW );
*num /= n;
*den /= n;
return( n );
}
|