1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
/* exp2.c
*
* Base 2 exponential function
*
*
*
* SYNOPSIS:
*
* double x, y, exp2();
*
* y = exp2( x );
*
*
*
* DESCRIPTION:
*
* Returns 2 raised to the x power.
*
* Range reduction is accomplished by separating the argument
* into an integer k and fraction f such that
* x k f
* 2 = 2 2.
*
* A Pade' form
*
* 1 + 2x P(x**2) / (Q(x**2) - x P(x**2) )
*
* approximates 2**x in the basic range [-0.5, 0.5].
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* IEEE -1022,+1024 30000 1.8e-16 5.4e-17
*
*
* See exp.c for comments on error amplification.
*
*
* ERROR MESSAGES:
*
* message condition value returned
* exp underflow x < -MAXL2 0.0
* exp overflow x > MAXL2 MAXNUM
*
* For DEC arithmetic, MAXL2 = 127.
* For IEEE arithmetic, MAXL2 = 1024.
*/
/*
Cephes Math Library Release 2.3: March, 1995
Copyright 1984, 1995 by Stephen L. Moshier
*/
#include "mconf.h"
#ifdef UNK
static double P[] = {
2.30933477057345225087E-2,
2.02020656693165307700E1,
1.51390680115615096133E3,
};
static double Q[] = {
/* 1.00000000000000000000E0,*/
2.33184211722314911771E2,
4.36821166879210612817E3,
};
#define MAXL2 1024.0
#define MINL2 -1024.0
#endif
#ifdef DEC
static unsigned short P[] = {
0036675,0027102,0122327,0053227,
0041241,0116724,0115412,0157355,
0042675,0036404,0101733,0132226,
};
static unsigned short Q[] = {
/*0040200,0000000,0000000,0000000,*/
0042151,0027450,0077732,0160744,
0043210,0100661,0077550,0056560,
};
#define MAXL2 127.0
#define MINL2 -127.0
#endif
#ifdef IBMPC
static unsigned short P[] = {
0xead3,0x549a,0xa5c8,0x3f97,
0x5bde,0x9361,0x33ba,0x4034,
0x7693,0x907b,0xa7a0,0x4097,
};
static unsigned short Q[] = {
/*0x0000,0x0000,0x0000,0x3ff0,*/
0x5c3c,0x0ffb,0x25e5,0x406d,
0x0bae,0x2fed,0x1036,0x40b1,
};
#define MAXL2 1024.0
#define MINL2 -1022.0
#endif
#ifdef MIEEE
static unsigned short P[] = {
0x3f97,0xa5c8,0x549a,0xead3,
0x4034,0x33ba,0x9361,0x5bde,
0x4097,0xa7a0,0x907b,0x7693,
};
static unsigned short Q[] = {
/*0x3ff0,0x0000,0x0000,0x0000,*/
0x406d,0x25e5,0x0ffb,0x5c3c,
0x40b1,0x1036,0x2fed,0x0bae,
};
#define MAXL2 1024.0
#define MINL2 -1022.0
#endif
extern double MAXNUM;
double exp2(double x)
{
double px, xx;
short n;
if( npy_isnan(x) )
return(x);
if( x > MAXL2)
{
return( NPY_INFINITY );
}
if( x < MINL2 )
{
return(0.0);
}
xx = x; /* save x */
/* separate into integer and fractional parts */
px = floor(x+0.5);
n = px;
x = x - px;
/* rational approximation
* exp2(x) = 1 + 2xP(xx)/(Q(xx) - P(xx))
* where xx = x**2
*/
xx = x * x;
px = x * polevl( xx, P, 2 );
x = px / ( p1evl( xx, Q, 2 ) - px );
x = 1.0 + ldexp( x, 1 );
/* scale by power of 2 */
x = ldexp( x, n );
return(x);
}
|