1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/* Square root, sine, cosine, and arctangent of polynomial.
* See polyn.c for data structures and discussion.
*/
#include <stdio.h>
#include <stdlib.h>
#include "mconf.h"
/* Highest degree of polynomial to be handled
by the polyn.c subroutine package. */
#define N 16
/* Highest degree actually initialized at runtime. */
extern int MAXPOL;
/* Taylor series coefficients for various functions
*/
double patan[N+1] = {
0.0, 1.0, 0.0, -1.0/3.0, 0.0,
1.0/5.0, 0.0, -1.0/7.0, 0.0, 1.0/9.0, 0.0, -1.0/11.0,
0.0, 1.0/13.0, 0.0, -1.0/15.0, 0.0 };
double psin[N+1] = {
0.0, 1.0, 0.0, -1.0/6.0, 0.0, 1.0/120.0, 0.0,
-1.0/5040.0, 0.0, 1.0/362880.0, 0.0, -1.0/39916800.0,
0.0, 1.0/6227020800.0, 0.0, -1.0/1.307674368e12, 0.0};
double pcos[N+1] = {
1.0, 0.0, -1.0/2.0, 0.0, 1.0/24.0, 0.0,
-1.0/720.0, 0.0, 1.0/40320.0, 0.0, -1.0/3628800.0, 0.0,
1.0/479001600.0, 0.0, -1.0/8.7179291e10, 0.0, 1.0/2.0922789888e13};
double pasin[N+1] = {
0.0, 1.0, 0.0, 1.0/6.0, 0.0,
3.0/40.0, 0.0, 15.0/336.0, 0.0, 105.0/3456.0, 0.0, 945.0/42240.0,
0.0, 10395.0/599040.0 , 0.0, 135135.0/9676800.0 , 0.0
};
/* Square root of 1 + x. */
double psqrt[N+1] = {
1.0, 1./2., -1./8., 1./16., -5./128., 7./256., -21./1024., 33./2048.,
-429./32768., 715./65536., -2431./262144., 4199./524288., -29393./4194304.,
52003./8388608., -185725./33554432., 334305./67108864.,
-9694845./2147483648.};
/* Arctangent of the ratio num/den of two polynomials.
*/
void
polatn( num, den, ans, nn )
double num[], den[], ans[];
int nn;
{
double a, t;
double *polq, *polu, *polt;
int i;
if (nn > N)
{
mtherr ("polatn", OVERFLOW);
return;
}
/* arctan( a + b ) = arctan(a) + arctan( b/(1 + ab + a**2) ) */
t = num[0];
a = den[0];
if( (t == 0.0) && (a == 0.0 ) )
{
t = num[1];
a = den[1];
}
t = atan2( t, a ); /* arctan(num/den), the ANSI argument order */
polq = (double * )malloc( (MAXPOL+1) * sizeof (double) );
polu = (double * )malloc( (MAXPOL+1) * sizeof (double) );
polt = (double * )malloc( (MAXPOL+1) * sizeof (double) );
polclr( polq, MAXPOL );
i = poldiv( den, nn, num, nn, polq );
a = polq[0]; /* a */
polq[0] = 0.0; /* b */
polmov( polq, nn, polu ); /* b */
/* Form the polynomial
1 + ab + a**2
where a is a scalar. */
for( i=0; i<=nn; i++ )
polu[i] *= a;
polu[0] += 1.0 + a * a;
poldiv( polu, nn, polq, nn, polt ); /* divide into b */
polsbt( polt, nn, patan, nn, polu ); /* arctan(b) */
polu[0] += t; /* plus arctan(a) */
polmov( polu, nn, ans );
free( polt );
free( polu );
free( polq );
}
/* Square root of a polynomial.
* Assumes the lowest degree nonzero term is dominant
* and of even degree. An error message is given
* if the Newton iteration does not converge.
*/
void
polsqt( pol, ans, nn )
double pol[], ans[];
int nn;
{
double t;
double *x, *y;
int i, n;
#if 0
double z[N+1];
double u;
#endif
if (nn > N)
{
mtherr ("polatn", OVERFLOW);
return;
}
x = (double * )malloc( (MAXPOL+1) * sizeof (double) );
y = (double * )malloc( (MAXPOL+1) * sizeof (double) );
polmov( pol, nn, x );
polclr( y, MAXPOL );
/* Find lowest degree nonzero term. */
t = 0.0;
for( n=0; n<nn; n++ )
{
if( x[n] != 0.0 )
goto nzero;
}
polmov( y, nn, ans );
return;
nzero:
if( n > 0 )
{
if (n & 1)
{
printf("error, sqrt of odd polynomial\n");
return;
}
/* Divide by x^n. */
y[n] = x[n];
poldiv (y, nn, pol, N, x);
}
t = x[0];
for( i=1; i<=nn; i++ )
x[i] /= t;
x[0] = 0.0;
/* series development sqrt(1+x) = 1 + x / 2 - x**2 / 8 + x**3 / 16
hopes that first (constant) term is greater than what follows */
polsbt( x, nn, psqrt, nn, y);
t = sqrt( t );
for( i=0; i<=nn; i++ )
y[i] *= t;
/* If first nonzero coefficient was at degree n > 0, multiply by
x^(n/2). */
if (n > 0)
{
polclr (x, MAXPOL);
x[n/2] = 1.0;
polmul (x, nn, y, nn, y);
}
#if 0
/* Newton iterations */
for( n=0; n<10; n++ )
{
poldiv( y, nn, pol, nn, z );
poladd( y, nn, z, nn, y );
for( i=0; i<=nn; i++ )
y[i] *= 0.5;
for( i=0; i<=nn; i++ )
{
u = fabs( y[i] - z[i] );
if( u > 1.0e-15 )
goto more;
}
goto done;
more: ;
}
printf( "square root did not converge\n" );
done:
#endif /* 0 */
polmov( y, nn, ans );
free( y );
free( x );
}
/* Sine of a polynomial.
* The computation uses
* sin(a+b) = sin(a) cos(b) + cos(a) sin(b)
* where a is the constant term of the polynomial and
* b is the sum of the rest of the terms.
* Since sin(b) and cos(b) are computed by series expansions,
* the value of b should be small.
*/
void
polsin( x, y, nn )
double x[], y[];
int nn;
{
double a, sc;
double *w, *c;
int i;
if (nn > N)
{
mtherr ("polatn", OVERFLOW);
return;
}
w = (double * )malloc( (MAXPOL+1) * sizeof (double) );
c = (double * )malloc( (MAXPOL+1) * sizeof (double) );
polmov( x, nn, w );
polclr( c, MAXPOL );
polclr( y, nn );
/* a, in the description, is x[0]. b is the polynomial x - x[0]. */
a = w[0];
/* c = cos (b) */
w[0] = 0.0;
polsbt( w, nn, pcos, nn, c );
sc = sin(a);
/* sin(a) cos (b) */
for( i=0; i<=nn; i++ )
c[i] *= sc;
/* y = sin (b) */
polsbt( w, nn, psin, nn, y );
sc = cos(a);
/* cos(a) sin(b) */
for( i=0; i<=nn; i++ )
y[i] *= sc;
poladd( c, nn, y, nn, y );
free( c );
free( w );
}
/* Cosine of a polynomial.
* The computation uses
* cos(a+b) = cos(a) cos(b) - sin(a) sin(b)
* where a is the constant term of the polynomial and
* b is the sum of the rest of the terms.
* Since sin(b) and cos(b) are computed by series expansions,
* the value of b should be small.
*/
void
polcos( x, y, nn )
double x[], y[];
int nn;
{
double a, sc;
double *w, *c;
int i;
if (nn > N)
{
mtherr ("polatn", OVERFLOW);
return;
}
w = (double * )malloc( (MAXPOL+1) * sizeof (double) );
c = (double * )malloc( (MAXPOL+1) * sizeof (double) );
polmov( x, nn, w );
polclr( c, MAXPOL );
polclr( y, nn );
a = w[0];
w[0] = 0.0;
/* c = cos(b) */
polsbt( w, nn, pcos, nn, c );
sc = cos(a);
/* cos(a) cos(b) */
for( i=0; i<=nn; i++ )
c[i] *= sc;
/* y = sin(b) */
polsbt( w, nn, psin, nn, y );
sc = sin(a);
/* sin(a) sin(b) */
for( i=0; i<=nn; i++ )
y[i] *= sc;
polsub( y, nn, c, nn, y );
free( c );
free( w );
}
|