1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/* rgamma.c
*
* Reciprocal Gamma function
*
*
*
* SYNOPSIS:
*
* double x, y, rgamma();
*
* y = rgamma( x );
*
*
*
* DESCRIPTION:
*
* Returns one divided by the Gamma function of the argument.
*
* The function is approximated by a Chebyshev expansion in
* the interval [0,1]. Range reduction is by recurrence
* for arguments between -34.034 and +34.84425627277176174.
* 1/MAXNUM is returned for positive arguments outside this
* range. For arguments less than -34.034 the cosecant
* reflection formula is applied; lograrithms are employed
* to avoid unnecessary overflow.
*
* The reciprocal Gamma function has no singularities,
* but overflow and underflow may occur for large arguments.
* These conditions return either MAXNUM or 1/MAXNUM with
* appropriate sign.
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC -30,+30 4000 1.2e-16 1.8e-17
* IEEE -30,+30 30000 1.1e-15 2.0e-16
* For arguments less than -34.034 the peak error is on the
* order of 5e-15 (DEC), excepting overflow or underflow.
*/
/*
Cephes Math Library Release 2.0: April, 1987
Copyright 1985, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
/* Chebyshev coefficients for reciprocal Gamma function
* in interval 0 to 1. Function is 1/(x Gamma(x)) - 1
*/
#ifdef UNK
static double R[] = {
3.13173458231230000000E-17,
-6.70718606477908000000E-16,
2.20039078172259550000E-15,
2.47691630348254132600E-13,
-6.60074100411295197440E-12,
5.13850186324226978840E-11,
1.08965386454418662084E-9,
-3.33964630686836942556E-8,
2.68975996440595483619E-7,
2.96001177518801696639E-6,
-8.04814124978471142852E-5,
4.16609138709688864714E-4,
5.06579864028608725080E-3,
-6.41925436109158228810E-2,
-4.98558728684003594785E-3,
1.27546015610523951063E-1
};
#endif
#ifdef DEC
static unsigned short R[] = {
0022420,0066376,0176751,0071636,
0123501,0051114,0042104,0131153,
0024036,0107013,0126504,0033361,
0025613,0070040,0035174,0162316,
0126750,0037060,0077775,0122202,
0027541,0177143,0037675,0105150,
0030625,0141311,0075005,0115436,
0132017,0067714,0125033,0014721,
0032620,0063707,0105256,0152643,
0033506,0122235,0072757,0170053,
0134650,0144041,0015617,0016143,
0035332,0066125,0000776,0006215,
0036245,0177377,0137173,0131432,
0137203,0073541,0055645,0141150,
0136243,0057043,0026226,0017362,
0037402,0115554,0033441,0012310
};
#endif
#ifdef IBMPC
static unsigned short R[] = {
0x2e74,0xdfbd,0x0d9f,0x3c82,
0x964d,0x8888,0x2a49,0xbcc8,
0x86de,0x75a8,0xd1c1,0x3ce3,
0x9c9a,0x074f,0x6e04,0x3d51,
0xb490,0x0fff,0x07c6,0xbd9d,
0xb14d,0x67f7,0x3fcc,0x3dcc,
0xb364,0x2f40,0xb859,0x3e12,
0x633a,0x9543,0xedf9,0xbe61,
0xdab4,0xf155,0x0cf8,0x3e92,
0xfe05,0xaebd,0xd493,0x3ec8,
0xe38c,0x2371,0x1904,0xbf15,
0xc192,0xa03f,0x4d8a,0x3f3b,
0x7663,0xf7cf,0xbfdf,0x3f74,
0xb84d,0x2b74,0x6eec,0xbfb0,
0xc3de,0x6592,0x6bc4,0xbf74,
0x2299,0x86e4,0x536d,0x3fc0
};
#endif
#ifdef MIEEE
static unsigned short R[] = {
0x3c82,0x0d9f,0xdfbd,0x2e74,
0xbcc8,0x2a49,0x8888,0x964d,
0x3ce3,0xd1c1,0x75a8,0x86de,
0x3d51,0x6e04,0x074f,0x9c9a,
0xbd9d,0x07c6,0x0fff,0xb490,
0x3dcc,0x3fcc,0x67f7,0xb14d,
0x3e12,0xb859,0x2f40,0xb364,
0xbe61,0xedf9,0x9543,0x633a,
0x3e92,0x0cf8,0xf155,0xdab4,
0x3ec8,0xd493,0xaebd,0xfe05,
0xbf15,0x1904,0x2371,0xe38c,
0x3f3b,0x4d8a,0xa03f,0xc192,
0x3f74,0xbfdf,0xf7cf,0x7663,
0xbfb0,0x6eec,0x2b74,0xb84d,
0xbf74,0x6bc4,0x6592,0xc3de,
0x3fc0,0x536d,0x86e4,0x2299
};
#endif
static char name[] = "rgamma";
extern double PI, MAXLOG, MAXNUM;
double rgamma(x)
double x;
{
double w, y, z;
int sign;
if( x > 34.84425627277176174)
{
mtherr( name, UNDERFLOW );
return(1.0/MAXNUM);
}
if( x < -34.034 )
{
w = -x;
z = sin( PI*w );
if( z == 0.0 )
return(0.0);
if( z < 0.0 )
{
sign = 1;
z = -z;
}
else
sign = -1;
y = log( w * z ) - log(PI) + lgam(w);
if( y < -MAXLOG )
{
mtherr( name, UNDERFLOW );
return( sign * 1.0 / MAXNUM );
}
if( y > MAXLOG )
{
mtherr( name, OVERFLOW );
return( sign * MAXNUM );
}
return( sign * exp(y));
}
z = 1.0;
w = x;
while( w > 1.0 ) /* Downward recurrence */
{
w -= 1.0;
z *= w;
}
while( w < 0.0 ) /* Upward recurrence */
{
z /= w;
w += 1.0;
}
if( w == 0.0 ) /* Nonpositive integer */
return(0.0);
if( w == 1.0 ) /* Other integer */
return( 1.0/z );
y = w * ( 1.0 + chbevl( 4.0*w-2.0, R, 16 ) ) / z;
return(y);
}
|