1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/* simq.c
*
* Solution of simultaneous linear equations AX = B
* by Gaussian elimination with partial pivoting
*
*
*
* SYNOPSIS:
*
* double A[n*n], B[n], X[n];
* int n, flag;
* int IPS[];
* int simq();
*
* ercode = simq( A, B, X, n, flag, IPS );
*
*
*
* DESCRIPTION:
*
* B, X, IPS are vectors of length n.
* A is an n x n matrix (i.e., a vector of length n*n),
* stored row-wise: that is, A(i,j) = A[ij],
* where ij = i*n + j, which is the transpose of the normal
* column-wise storage.
*
* The contents of matrix A are destroyed.
*
* Set flag=0 to solve.
* Set flag=-1 to do a new back substitution for different B vector
* using the same A matrix previously reduced when flag=0.
*
* The routine returns nonzero on error; messages are printed.
*
*
* ACCURACY:
*
* Depends on the conditioning (range of eigenvalues) of matrix A.
*
*
* REFERENCE:
*
* Computer Solution of Linear Algebraic Systems,
* by George E. Forsythe and Cleve B. Moler; Prentice-Hall, 1967.
*
*/
/* simq 2 */
#include <stdio.h>
int simq(double [], double [], double [], int, int, int [] );
#define fabs(x) ((x) < 0 ? -(x) : (x))
int simq( A, B, X, n, flag, IPS )
double A[], B[], X[];
int n, flag;
int IPS[];
{
int i, j, ij, ip, ipj, ipk, ipn;
int idxpiv, iback;
int k, kp, kp1, kpk, kpn;
int nip, nkp, nm1;
double em, q, rownrm, big, size, pivot, sum;
nm1 = n-1;
if( flag < 0 )
goto solve;
/* Initialize IPS and X */
ij=0;
for( i=0; i<n; i++ )
{
IPS[i] = i;
rownrm = 0.0;
for( j=0; j<n; j++ )
{
q = fabs( A[ij] );
if( rownrm < q )
rownrm = q;
++ij;
}
if( rownrm == 0.0 )
{
puts("SIMQ ROWNRM=0");
return(1);
}
X[i] = 1.0/rownrm;
}
/* simq 3 */
/* Gaussian elimination with partial pivoting */
for( k=0; k<nm1; k++ )
{
big= 0.0;
idxpiv = 0;
for( i=k; i<n; i++ )
{
ip = IPS[i];
ipk = n*ip + k;
size = fabs( A[ipk] ) * X[ip];
if( size > big )
{
big = size;
idxpiv = i;
}
}
if( big == 0.0 )
{
puts( "SIMQ BIG=0" );
return(2);
}
if( idxpiv != k )
{
j = IPS[k];
IPS[k] = IPS[idxpiv];
IPS[idxpiv] = j;
}
kp = IPS[k];
kpk = n*kp + k;
pivot = A[kpk];
kp1 = k+1;
for( i=kp1; i<n; i++ )
{
ip = IPS[i];
ipk = n*ip + k;
em = -A[ipk]/pivot;
A[ipk] = -em;
nip = n*ip;
nkp = n*kp;
for( j=kp1; j<n; j++ )
{
ipj = nip + j;
A[ipj] = A[ipj] + em * A[nkp + j];
}
}
}
kpn = n * IPS[n-1] + n - 1; /* last element of IPS[n] th row */
if( A[kpn] == 0.0 )
{
puts( "SIMQ A[kpn]=0");
return(3);
}
/* simq 4 */
/* back substitution */
solve:
ip = IPS[0];
X[0] = B[ip];
for( i=1; i<n; i++ )
{
ip = IPS[i];
ipj = n * ip;
sum = 0.0;
for( j=0; j<i; j++ )
{
sum += A[ipj] * X[j];
++ipj;
}
X[i] = B[ip] - sum;
}
ipn = n * IPS[n-1] + n - 1;
X[n-1] = X[n-1]/A[ipn];
for( iback=1; iback<n; iback++ )
{
/* i goes (n-1),...,1 */
i = nm1 - iback;
ip = IPS[i];
nip = n*ip;
sum = 0.0;
for( j=i+1; j<n; j++ )
sum += A[nip+j] * X[j];
X[i] = (X[i] - sum)/A[nip+i];
}
return(0);
}
|