1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
|
/* tandg.c
*
* Circular tangent of argument in degrees
*
*
*
* SYNOPSIS:
*
* double x, y, tandg();
*
* y = tandg( x );
*
*
*
* DESCRIPTION:
*
* Returns the circular tangent of the argument x in degrees.
*
* Range reduction is modulo pi/4. A rational function
* x + x**3 P(x**2)/Q(x**2)
* is employed in the basic interval [0, pi/4].
*
*
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC 0,10 8000 3.4e-17 1.2e-17
* IEEE 0,10 30000 3.2e-16 8.4e-17
*
* ERROR MESSAGES:
*
* message condition value returned
* tandg total loss x > 8.0e14 (DEC) 0.0
* x > 1.0e14 (IEEE)
* tandg singularity x = 180 k + 90 MAXNUM
*/
/* cotdg.c
*
* Circular cotangent of argument in degrees
*
*
*
* SYNOPSIS:
*
* double x, y, cotdg();
*
* y = cotdg( x );
*
*
*
* DESCRIPTION:
*
* Returns the circular cotangent of the argument x in degrees.
*
* Range reduction is modulo pi/4. A rational function
* x + x**3 P(x**2)/Q(x**2)
* is employed in the basic interval [0, pi/4].
*
*
* ERROR MESSAGES:
*
* message condition value returned
* cotdg total loss x > 8.0e14 (DEC) 0.0
* x > 1.0e14 (IEEE)
* cotdg singularity x = 180 k MAXNUM
*/
/*
Cephes Math Library Release 2.0: April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/
#include "mconf.h"
#ifdef UNK
static double PI180 = 1.74532925199432957692E-2;
static double lossth = 1.0e14;
#endif
#ifdef DEC
static unsigned short P1[] = {0036616,0175065,0011224,0164711};
#define PI180 *(double *)P1
static double lossth = 8.0e14;
#endif
#ifdef IBMPC
static unsigned short P1[] = {0x9d39,0xa252,0xdf46,0x3f91};
#define PI180 *(double *)P1
static double lossth = 1.0e14;
#endif
#ifdef MIEEE
static unsigned short P1[] = {
0x3f91,0xdf46,0xa252,0x9d39
};
#define PI180 *(double *)P1
static double lossth = 1.0e14;
#endif
static double tancot(double, int);
extern double MAXNUM;
double
tandg(double x)
{
return( tancot(x,0) );
}
double
cotdg(double x)
{
return( tancot(x,1) );
}
static double
tancot(double xx, int cotflg)
{
double x;
int sign;
/* make argument positive but save the sign */
if( xx < 0 ) {
x = -xx;
sign = -1;
} else {
x = xx;
sign = 1;
}
if( x > lossth ) {
mtherr("tandg", TLOSS);
return 0.0;
}
/* modulo 180 */
x = x - 180.0*floor(x/180.0);
if (cotflg) {
if (x <= 90.0) {
x = 90.0 - x;
} else {
x = x - 90.0;
sign *= -1;
}
} else {
if (x > 90.0) {
x = 180.0 - x;
sign *= -1;
}
}
if (x == 0.0) {
return 0.0;
} else if (x == 45.0) {
return sign*1.0;
} else if (x == 90.0) {
mtherr( (cotflg ? "cotdg" : "tandg"), SING );
return MAXNUM;
}
/* x is now transformed into [0, 90) */
return sign * tan(x*PI180);
}
|