File: tandg.c

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (165 lines) | stat: -rw-r--r-- 3,199 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*							tandg.c
 *
 *	Circular tangent of argument in degrees
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, tandg();
 *
 * y = tandg( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the circular tangent of the argument x in degrees.
 *
 * Range reduction is modulo pi/4.  A rational function
 *       x + x**3 P(x**2)/Q(x**2)
 * is employed in the basic interval [0, pi/4].
 *
 *
 *
 * ACCURACY:
 *
 *                      Relative error:
 * arithmetic   domain     # trials      peak         rms
 *    DEC      0,10          8000      3.4e-17      1.2e-17
 *    IEEE     0,10         30000      3.2e-16      8.4e-17
 *
 * ERROR MESSAGES:
 *
 *   message         condition          value returned
 * tandg total loss   x > 8.0e14 (DEC)      0.0
 *                    x > 1.0e14 (IEEE)
 * tandg singularity  x = 180 k  +  90     MAXNUM
 */
/*							cotdg.c
 *
 *	Circular cotangent of argument in degrees
 *
 *
 *
 * SYNOPSIS:
 *
 * double x, y, cotdg();
 *
 * y = cotdg( x );
 *
 *
 *
 * DESCRIPTION:
 *
 * Returns the circular cotangent of the argument x in degrees.
 *
 * Range reduction is modulo pi/4.  A rational function
 *       x + x**3 P(x**2)/Q(x**2)
 * is employed in the basic interval [0, pi/4].
 *
 *
 * ERROR MESSAGES:
 *
 *   message         condition          value returned
 * cotdg total loss   x > 8.0e14 (DEC)      0.0
 *                    x > 1.0e14 (IEEE)
 * cotdg singularity  x = 180 k            MAXNUM
 */

/*
Cephes Math Library Release 2.0:  April, 1987
Copyright 1984, 1987 by Stephen L. Moshier
Direct inquiries to 30 Frost Street, Cambridge, MA 02140
*/

#include "mconf.h"

#ifdef UNK
static double PI180 = 1.74532925199432957692E-2;
static double lossth = 1.0e14;
#endif

#ifdef DEC
static unsigned short P1[] = {0036616,0175065,0011224,0164711};
#define PI180 *(double *)P1
static double lossth = 8.0e14;
#endif

#ifdef IBMPC
static unsigned short P1[] = {0x9d39,0xa252,0xdf46,0x3f91};
#define PI180 *(double *)P1
static double lossth = 1.0e14;
#endif

#ifdef MIEEE
static unsigned short P1[] = {
0x3f91,0xdf46,0xa252,0x9d39
};
#define PI180 *(double *)P1
static double lossth = 1.0e14;
#endif

static double tancot(double, int);
extern double MAXNUM;

double
tandg(double x)
{
    return( tancot(x,0) );
}


double
cotdg(double x)
{
    return( tancot(x,1) );
}


static double
tancot(double xx, int cotflg)
{
    double x;
    int sign;

    /* make argument positive but save the sign */
    if( xx < 0 ) {
        x = -xx;
        sign = -1;
    } else {
        x = xx;
        sign = 1;
    }

    if( x > lossth ) {
        mtherr("tandg", TLOSS);
        return 0.0;
    }

    /* modulo 180 */
    x = x - 180.0*floor(x/180.0);
    if (cotflg) {
        if (x <= 90.0) {
            x = 90.0 - x;
        } else {
            x = x - 90.0;
            sign *= -1;
        }
    } else {
        if (x > 90.0) {
            x = 180.0 - x;
            sign *= -1;
        }
    }
    if (x == 0.0) {
        return 0.0;
    } else if (x == 45.0) {
        return sign*1.0;
    } else if (x == 90.0) {
        mtherr( (cotflg ? "cotdg" : "tandg"), SING );
        return MAXNUM;
    }
    /* x is now transformed into [0, 90) */
    return sign * tan(x*PI180);
}