1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
|
"""
==========================================
Statistical functions (:mod:`scipy.stats`)
==========================================
.. module:: scipy.stats
This module contains a large number of probability distributions as
well as a growing library of statistical functions.
Each included distribution is an instance of the class rv_continous:
For each given name the following methods are available:
.. autosummary::
:toctree: generated/
rv_continuous
rv_continuous.rvs
rv_continuous.pdf
rv_continuous.logpdf
rv_continuous.cdf
rv_continuous.logcdf
rv_continuous.sf
rv_continuous.logsf
rv_continuous.ppf
rv_continuous.isf
rv_continuous.moment
rv_continuous.stats
rv_continuous.entropy
rv_continuous.fit
rv_continuous.expect
rv_continuous.median
rv_continuous.mean
rv_continuous.var
rv_continuous.std
rv_continuous.interval
Calling the instance as a function returns a frozen pdf whose shape,
location, and scale parameters are fixed.
Similarly, each discrete distribution is an instance of the class
rv_discrete:
.. autosummary::
:toctree: generated/
rv_discrete
rv_discrete.rvs
rv_discrete.pmf
rv_discrete.logpmf
rv_discrete.cdf
rv_discrete.logcdf
rv_discrete.sf
rv_discrete.logsf
rv_discrete.ppf
rv_discrete.isf
rv_discrete.stats
rv_discrete.moment
rv_discrete.entropy
rv_discrete.expect
rv_discrete.median
rv_discrete.mean
rv_discrete.var
rv_discrete.std
rv_discrete.interval
Continuous distributions
========================
.. autosummary::
:toctree: generated/
norm -- Normal (Gaussian)
alpha -- Alpha
anglit -- Anglit
arcsine -- Arcsine
beta -- Beta
betaprime -- Beta Prime
bradford -- Bradford
burr -- Burr
cauchy -- Cauchy
chi -- Chi
chi2 -- Chi-squared
cosine -- Cosine
dgamma -- Double Gamma
dweibull -- Double Weibull
erlang -- Erlang
expon -- Exponential
exponweib -- Exponentiated Weibull
exponpow -- Exponential Power
f -- F (Snecdor F)
fatiguelife -- Fatigue Life (Birnbaum-Sanders)
fisk -- Fisk
foldcauchy -- Folded Cauchy
foldnorm -- Folded Normal
frechet_r -- Frechet Right Sided, Extreme Value Type II (Extreme LB) or weibull_min
frechet_l -- Frechet Left Sided, Weibull_max
genlogistic -- Generalized Logistic
genpareto -- Generalized Pareto
genexpon -- Generalized Exponential
genextreme -- Generalized Extreme Value
gausshyper -- Gauss Hypergeometric
gamma -- Gamma
gengamma -- Generalized gamma
genhalflogistic -- Generalized Half Logistic
gilbrat -- Gilbrat
gompertz -- Gompertz (Truncated Gumbel)
gumbel_r -- Right Sided Gumbel, Log-Weibull, Fisher-Tippett, Extreme Value Type I
gumbel_l -- Left Sided Gumbel, etc.
halfcauchy -- Half Cauchy
halflogistic -- Half Logistic
halfnorm -- Half Normal
hypsecant -- Hyperbolic Secant
invgamma -- Inverse Gamma
invgauss -- Inverse Gaussian
invweibull -- Inverse Weibull
johnsonsb -- Johnson SB
johnsonsu -- Johnson SU
ksone -- Kolmogorov-Smirnov one-sided (no stats)
kstwobign -- Kolmogorov-Smirnov two-sided test for Large N (no stats)
laplace -- Laplace
logistic -- Logistic
loggamma -- Log-Gamma
loglaplace -- Log-Laplace (Log Double Exponential)
lognorm -- Log-Normal
lomax -- Lomax (Pareto of the second kind)
maxwell -- Maxwell
mielke -- Mielke's Beta-Kappa
nakagami -- Nakagami
ncx2 -- Non-central chi-squared
ncf -- Non-central F
nct -- Non-central Student's T
pareto -- Pareto
powerlaw -- Power-function
powerlognorm -- Power log normal
powernorm -- Power normal
rdist -- R-distribution
reciprocal -- Reciprocal
rayleigh -- Rayleigh
rice -- Rice
recipinvgauss -- Reciprocal Inverse Gaussian
semicircular -- Semicircular
t -- Student's T
triang -- Triangular
truncexpon -- Truncated Exponential
truncnorm -- Truncated Normal
tukeylambda -- Tukey-Lambda
uniform -- Uniform
vonmises -- Von-Mises (Circular)
wald -- Wald
weibull_min -- Minimum Weibull (see Frechet)
weibull_max -- Maximum Weibull (see Frechet)
wrapcauchy -- Wrapped Cauchy
Discrete distributions
======================
.. autosummary::
:toctree: generated/
binom -- Binomial
bernoulli -- Bernoulli
nbinom -- Negative Binomial
geom -- Geometric
hypergeom -- Hypergeometric
logser -- Logarithmic (Log-Series, Series)
poisson -- Poisson
planck -- Planck (Discrete Exponential)
boltzmann -- Boltzmann (Truncated Discrete Exponential)
randint -- Discrete Uniform
zipf -- Zipf
dlaplace -- Discrete Laplacian
Statistical functions
=====================
Several of these functions have a similar version in scipy.stats.mstats
which work for masked arrays.
.. autosummary::
:toctree: generated/
gmean -- Geometric mean
hmean -- Harmonic mean
mean -- Arithmetic mean
cmedian -- Computed median
median -- Median
mode -- Modal value
tmean -- Truncated arithmetic mean
tvar -- Truncated variance
tmin _
tmax _
tstd _
tsem _
moment -- Central moment
variation -- Coefficient of variation
skew -- Skewness
kurtosis -- Fisher or Pearson kurtosis
describe -- Descriptive statistics
skewtest _
kurtosistest _
normaltest _
.. autosummary::
:toctree: generated/
itemfreq _
scoreatpercentile _
percentileofscore _
histogram2 _
histogram _
cumfreq _
relfreq _
.. autosummary::
:toctree: generated/
obrientransform
signaltonoise
bayes_mvs
sem
zmap
zscore
.. autosummary::
:toctree: generated/
threshold
trimboth
trim1
.. autosummary::
:toctree: generated/
f_oneway
pearsonr
spearmanr
pointbiserialr
kendalltau
linregress
.. autosummary::
:toctree: generated/
ttest_1samp
ttest_ind
ttest_rel
kstest
chisquare
ks_2samp
mannwhitneyu
tiecorrect
ranksums
wilcoxon
kruskal
friedmanchisquare
.. autosummary::
:toctree: generated/
ansari
bartlett
levene
shapiro
anderson
binom_test
fligner
mood
oneway
Contingency table functions
===========================
.. autosummary::
:toctree: generated/
fisher_exact
chi2_contingency
contingency.expected_freq
contingency.margins
General linear model
====================
.. autosummary::
:toctree: generated/
glm
Plot-tests
==========
.. autosummary::
:toctree: generated/
probplot
ppcc_max
ppcc_plot
Masked statistics functions
===========================
.. toctree::
stats.mstats
Univariate and multivariate kernel density estimation (:mod:`scipy.stats.kde`)
==============================================================================
.. autosummary::
:toctree: generated/
gaussian_kde
For many more stat related functions install the software R and the
interface package rpy.
"""
from stats import *
from distributions import *
from rv import *
from morestats import *
from kde import gaussian_kde
import mstats
from contingency import chi2_contingency
#remove vonmises_cython from __all__, I don't know why it is included
__all__ = filter(lambda s:not (s.startswith('_') or s.endswith('cython')),dir())
from numpy.testing import Tester
test = Tester().test
|