1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956
|
# Copyright (c) Gary Strangman. All rights reserved
#
# Disclaimer
#
# This software is provided "as-is". There are no expressed or implied
# warranties of any kind, including, but not limited to, the warranties
# of merchantability and fitness for a given application. In no event
# shall Gary Strangman be liable for any direct, indirect, incidental,
# special, exemplary or consequential damages (including, but not limited
# to, loss of use, data or profits, or business interruption) however
# caused and on any theory of liability, whether in contract, strict
# liability or tort (including negligence or otherwise) arising in any way
# out of the use of this software, even if advised of the possibility of
# such damage.
#
#
# Heavily adapted for use by SciPy 2002 by Travis Oliphant
"""
stats.py module
#################################################
####### Written by: Gary Strangman ###########
#################################################
A collection of basic statistical functions for python. The function
names appear below.
Some scalar functions defined here are also available in the scipy.special
package where they work on arbitrary sized arrays.
Disclaimers: The function list is obviously incomplete and, worse, the
functions are not optimized. All functions have been tested (some more
so than others), but they are far from bulletproof. Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-) A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters. These functions don't necessarily have
both list and array versions but were deemed useful
CENTRAL TENDENCY: gmean (geometric mean)
hmean (harmonic mean)
medianscore
mode
MOMENTS: moment
variation
skew
kurtosis
normaltest (for arrays only)
MOMENTS HANDLING NAN: nanmean
nanmedian
nanstd
ALTERED VERSIONS: tmean
tvar
tstd
tsem
describe
FREQUENCY STATS: freqtable
itemfreq
scoreatpercentile
percentileofscore
histogram
cumfreq
relfreq
VARIABILITY: obrientransform
signaltonoise (for arrays only)
sem
TRIMMING FCNS: threshold (for arrays only)
trimboth
trim1
around (round all vals to 'n' decimals)
CORRELATION FCNS: paired
pearsonr
fisher_exact
spearmanr
pointbiserialr
kendalltau
linregress
INFERENTIAL STATS: ttest_1samp
ttest_ind
ttest_rel
chisquare
ks_2samp
mannwhitneyu
ranksums
wilcoxon
kruskal
friedmanchisquare
PROBABILITY CALCS: chisqprob
zprob
fprob
betai
## Note that scipy.stats.distributions has many more statistical probability
## functions defined.
ANOVA FUNCTIONS: f_oneway
f_value
SUPPORT FUNCTIONS: ss
square_of_sums
shellsort
rankdata
References
----------
[CRCProbStat2000]_
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
## CHANGE LOG:
## ===========
## since 2001-06-25 ... see scipy SVN changelog
## 05-11-29 ... fixed default axis to be 0 for consistency with scipy;
## cleanup of redundant imports, dead code, {0,1} -> booleans
## 02-02-10 ... require Numeric, eliminate "list-only" functions
## (only 1 set of functions now and no Dispatch class),
## removed all references to aXXXX functions.
## 00-04-13 ... pulled all "global" statements, except from aanova()
## added/fixed lots of documentation, removed io.py dependency
## changed to version 0.5
## 99-11-13 ... added asign() function
## 99-11-01 ... changed version to 0.4 ... enough incremental changes now
## 99-10-25 ... added acovariance and acorrelation functions
## 99-10-10 ... fixed askew/akurtosis to avoid divide-by-zero errors
## added aglm function (crude, but will be improved)
## 99-10-04 ... upgraded acumsum, ass, asummult, asamplevar, var, etc. to
## all handle lists of 'dimension's and keepdims
## REMOVED ar0, ar2, ar3, ar4 and replaced them with around
## reinserted fixes for abetai to avoid math overflows
## 99-09-05 ... rewrote achisqprob/aerfcc/aksprob/afprob/abetacf/abetai to
## handle multi-dimensional arrays (whew!)
## 99-08-30 ... fixed l/amoment, l/askew, l/akurtosis per D'Agostino (1990)
## added anormaltest per same reference
## re-wrote azprob to calc arrays of probs all at once
## 99-08-22 ... edited attest_ind printing section so arrays could be rounded
## 99-08-19 ... fixed amean and aharmonicmean for non-error(!) overflow on
## short/byte arrays (mean of #s btw 100-300 = -150??)
## 99-08-09 ... fixed asum so that the None case works for Byte arrays
## 99-08-08 ... fixed 7/3 'improvement' to handle t-calcs on N-D arrays
## 99-07-03 ... improved attest_ind, attest_rel (zero-division errortrap)
## 99-06-24 ... fixed bug(?) in attest_ind (n1=a.shape[0])
## 04/11/99 ... added asignaltonoise, athreshold functions, changed all
## max/min in array section to maximum/minimum,
## fixed square_of_sums to prevent integer overflow
## 04/10/99 ... !!! Changed function name ... sumsquared ==> square_of_sums
## 03/18/99 ... Added ar0, ar2, ar3 and ar4 rounding functions
## 02/28/99 ... Fixed aobrientransform to return an array rather than a list
## 01/15/99 ... Essentially ceased updating list-versions of functions (!!!)
## 01/13/99 ... CHANGED TO VERSION 0.3
## fixed bug in a/lmannwhitneyu p-value calculation
## 12/31/98 ... fixed variable-name bug in ldescribe
## 12/19/98 ... fixed bug in findwithin (fcns needed pstat. prefix)
## 12/16/98 ... changed amedianscore to return float (not array) for 1 score
## 12/14/98 ... added atmin and atmax functions
## removed umath from import line (not needed)
## l/ageometricmean modified to reduce chance of overflows (take
## nth root first, then multiply)
## 12/07/98 ... added __version__variable (now 0.2)
## removed all 'stats.' from anova() fcn
## 12/06/98 ... changed those functions (except shellsort) that altered
## arguments in-place ... cumsum, ranksort, ...
## updated (and fixed some) doc-strings
## 12/01/98 ... added anova() function (requires NumPy)
## incorporated Dispatch class
## 11/12/98 ... added functionality to amean, aharmonicmean, ageometricmean
## added 'asum' function (added functionality to add.reduce)
## fixed both moment and amoment (two errors)
## changed name of skewness and askewness to skew and askew
## fixed (a)histogram (which sometimes counted points <lowerlimit)
# Standard library imports.
import warnings
import math
# friedmanchisquare patch uses python sum
pysum = sum # save it before it gets overwritten
# Scipy imports.
from numpy import array, asarray, dot, ma, zeros, sum
import scipy.special as special
import scipy.linalg as linalg
import numpy as np
import futil
import distributions
# Local imports.
import _support
from _support import _chk_asarray, _chk2_asarray
__all__ = ['find_repeats', 'gmean', 'hmean', 'cmedian', 'mode',
'tmean', 'tvar', 'tmin', 'tmax', 'tstd', 'tsem',
'moment', 'variation', 'skew', 'kurtosis', 'describe',
'skewtest', 'kurtosistest', 'normaltest',
'itemfreq', 'scoreatpercentile', 'percentileofscore',
'histogram', 'histogram2', 'cumfreq', 'relfreq',
'obrientransform', 'signaltonoise', 'sem', 'zmap', 'zscore',
'threshold', 'sigmaclip', 'trimboth', 'trim1', 'trim_mean',
'f_oneway', 'pearsonr', 'fisher_exact',
'spearmanr', 'pointbiserialr', 'kendalltau', 'linregress',
'ttest_1samp', 'ttest_ind', 'ttest_rel',
'kstest', 'chisquare', 'ks_2samp', 'mannwhitneyu',
'tiecorrect', 'ranksums', 'kruskal', 'friedmanchisquare',
'zprob', 'chisqprob', 'ksprob', 'fprob', 'betai',
'glm', 'f_value_wilks_lambda',
'f_value', 'f_value_multivariate',
'ss', 'square_of_sums',
'fastsort', 'rankdata',
'nanmean', 'nanstd', 'nanmedian',
]
def find_repeats(arr):
"""Find repeats in arr and return (repeats, repeat_count)
"""
v1,v2, n = futil.dfreps(arr)
return v1[:n],v2[:n]
#######
### NAN friendly functions
########
def nanmean(x, axis=0):
"""
Compute the mean over the given axis ignoring nans.
Parameters
----------
x : ndarray
Input array.
axis : int, optional
Axis along which the mean is computed. Default is 0, i.e. the
first axis.
Returns
-------
m : float
The mean of `x`, ignoring nans.
See Also
--------
nanstd, nanmedian
Examples
--------
>>> from scipy import stats
>>> a = np.linspace(0, 4, 3)
>>> a
array([ 0., 2., 4.])
>>> a[-1] = np.nan
>>> stats.nanmean(a)
1.0
"""
x, axis = _chk_asarray(x,axis)
x = x.copy()
Norig = x.shape[axis]
factor = 1.0-np.sum(np.isnan(x),axis)*1.0/Norig
x[np.isnan(x)] = 0
return np.mean(x,axis)/factor
def nanstd(x, axis=0, bias=False):
"""
Compute the standard deviation over the given axis, ignoring nans.
Parameters
----------
x : array_like
Input array.
axis : int or None, optional
Axis along which the standard deviation is computed. Default is 0.
If None, compute over the whole array `x`.
bias : bool, optional
If True, the biased (normalized by N) definition is used. If False
(default), the unbiased definition is used.
Returns
-------
s : float
The standard deviation.
See Also
--------
nanmean, nanmedian
Examples
--------
>>> from scipy import stats
>>> a = np.arange(10, dtype=float)
>>> a[1:3] = np.nan
>>> np.std(a)
nan
>>> stats.nanstd(a)
2.9154759474226504
>>> stats.nanstd(a.reshape(2, 5), axis=1)
array([ 2.0817, 1.5811])
>>> stats.nanstd(a.reshape(2, 5), axis=None)
2.9154759474226504
"""
x, axis = _chk_asarray(x,axis)
x = x.copy()
Norig = x.shape[axis]
Nnan = np.sum(np.isnan(x),axis)*1.0
n = Norig - Nnan
x[np.isnan(x)] = 0.
m1 = np.sum(x,axis)/n
if axis:
d = (x - np.expand_dims(m1, axis))**2.0
else:
d = (x - m1)**2.0
m2 = np.sum(d,axis)-(m1*m1)*Nnan
if bias:
m2c = m2 / n
else:
m2c = m2 / (n - 1.)
return np.sqrt(m2c)
def _nanmedian(arr1d): # This only works on 1d arrays
"""Private function for rank a arrays. Compute the median ignoring Nan.
Parameters
----------
arr1d : ndarray
Input array, of rank 1.
Results
-------
m : float
The median.
"""
cond = 1-np.isnan(arr1d)
x = np.sort(np.compress(cond,arr1d,axis=-1))
if x.size == 0:
return np.nan
return np.median(x)
def nanmedian(x, axis=0):
"""
Compute the median along the given axis ignoring nan values.
Parameters
----------
x : array_like
Input array.
axis : int, optional
Axis along which the median is computed. Default is 0, i.e. the
first axis.
Returns
-------
m : float
The median of `x` along `axis`.
See Also
--------
nanstd, nanmean
Examples
--------
>>> from scipy import stats
>>> a = np.array([0, 3, 1, 5, 5, np.nan])
>>> stats.nanmedian(a)
array(3.0)
>>> b = np.array([0, 3, 1, 5, 5, np.nan, 5])
>>> stats.nanmedian(b)
array(4.0)
Example with axis:
>>> c = np.arange(30.).reshape(5,6)
>>> idx = np.array([False, False, False, True, False] * 6).reshape(5,6)
>>> c[idx] = np.nan
>>> c
array([[ 0., 1., 2., nan, 4., 5.],
[ 6., 7., nan, 9., 10., 11.],
[ 12., nan, 14., 15., 16., 17.],
[ nan, 19., 20., 21., 22., nan],
[ 24., 25., 26., 27., nan, 29.]])
>>> stats.nanmedian(c, axis=1)
array([ 2. , 9. , 15. , 20.5, 26. ])
"""
x, axis = _chk_asarray(x, axis)
if x.ndim == 0:
return float(x.item())
x = x.copy()
x = np.apply_along_axis(_nanmedian, axis, x)
if x.ndim == 0:
x = float(x.item())
return x
#####################################
######## CENTRAL TENDENCY ########
#####################################
def gmean(a, axis=0, dtype=None):
"""
Compute the geometric mean along the specified axis.
Returns the geometric average of the array elements.
That is: n-th root of (x1 * x2 * ... * xn)
Parameters
----------
a : array_like
Input array or object that can be converted to an array.
axis : int, optional, default axis=0
Axis along which the geometric mean is computed.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If dtype is not specified, it defaults to the
dtype of a, unless a has an integer dtype with a precision less than
that of the default platform integer. In that case, the default
platform integer is used.
Returns
-------
gmean : ndarray,
see dtype parameter above
See Also
--------
numpy.mean : Arithmetic average
numpy.average : Weighted average
hmean: Harmonic mean
Notes
-----
The geometric average is computed over a single dimension of the input
array, axis=0 by default, or all values in the array if axis=None.
float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that
arise in the calculations such as Not a Number and infinity because masked
arrays automatically mask any non-finite values.
"""
if not isinstance(a, np.ndarray): #if not an ndarray object attempt to convert it
log_a=np.log(np.array(a, dtype=dtype))
elif dtype: #Must change the default dtype allowing array type
if isinstance(a,np.ma.MaskedArray):
log_a=np.log(np.ma.asarray(a, dtype=dtype))
else:
log_a=np.log(np.asarray(a, dtype=dtype))
else:
log_a = np.log(a)
return np.exp(log_a.mean(axis=axis))
def hmean(a, axis=0, dtype=None):
"""
Calculates the harmonic mean along the specified axis.
That is: n / (1/x1 + 1/x2 + ... + 1/xn)
Parameters
----------
a : array_like
Input array, masked array or object that can be converted to an array.
axis : int, optional, default axis=0
Axis along which the harmonic mean is computed.
dtype : dtype, optional
Type of the returned array and of the accumulator in which the
elements are summed. If `dtype` is not specified, it defaults to the
dtype of `a`, unless `a` has an integer `dtype` with a precision less
than that of the default platform integer. In that case, the default
platform integer is used.
Returns
-------
hmean : ndarray,
see `dtype` parameter above
See Also
--------
numpy.mean : Arithmetic average
numpy.average : Weighted average
gmean: Geometric mean
Notes
-----
The harmonic mean is computed over a single dimension of the input
array, axis=0 by default, or all values in the array if axis=None.
float64 intermediate and return values are used for integer inputs.
Use masked arrays to ignore any non-finite values in the input or that
arise in the calculations such as Not a Number and infinity.
"""
if not isinstance(a, np.ndarray):
a=np.array(a, dtype=dtype)
if np.all(a >0): # Harmonic mean only defined if greater than zero
if isinstance(a, np.ma.MaskedArray):
size = a.count(axis)
else:
if axis == None:
a=a.ravel()
size = a.shape[0]
else:
size = a.shape[axis]
return size / np.sum(1.0/a, axis=axis, dtype=dtype)
else:
raise ValueError("Harmonic mean only defined if all elements greater than zero")
def cmedian(a, numbins=1000):
"""
Returns the computed median value of an array.
All of the values in the input array are used. The input array is first
histogrammed using `numbins` bins. The bin containing the median is
selected by searching for the halfway point in the cumulative histogram.
The median value is then computed by linearly interpolating across that
bin.
Parameters
----------
a : array_like
Input array.
numbins : int
The number of bins used to histogram the data. More bins give greater
accuracy to the approximation of the median.
Returns
-------
cmedian : float
An approximation of the median.
References
----------
[CRCProbStat2000]_ Section 2.2.6
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
# TODO: numpy.median() always seems to be a better choice.
# A better version of this function would take already-histogrammed data
# and compute the median from that.
a = np.ravel(a)
n = float(len(a))
# We will emulate the (fixed!) bounds selection scheme used by
# scipy.stats.histogram(), but use numpy.histogram() since it is faster.
amin = a.min()
amax = a.max()
estbinwidth = (amax - amin)/float(numbins - 1)
binsize = (amax - amin + estbinwidth) / float(numbins)
(hist, bins) = np.histogram(a, numbins,
range=(amin-binsize*0.5, amax+binsize*0.5))
binsize = bins[1] - bins[0]
cumhist = np.cumsum(hist) # make cumulative histogram
cfbin = np.searchsorted(cumhist, n/2.0)
LRL = bins[cfbin] # get lower read limit of that bin
if cfbin == 0:
cfbelow = 0.0
else:
cfbelow = cumhist[cfbin-1] # cum. freq. below bin
freq = hist[cfbin] # frequency IN the 50%ile bin
median = LRL + ((n/2.0-cfbelow)/float(freq))*binsize # MEDIAN
return median
def mode(a, axis=0):
"""
Returns an array of the modal (most common) value in the passed array.
If there is more than one such value, only the first is returned.
The bin-count for the modal bins is also returned.
Parameters
----------
a : array_like
n-dimensional array of which to find mode(s).
axis : int, optional
Axis along which to operate. Default is 0, i.e. the first axis.
Returns
-------
vals : ndarray
Array of modal values.
counts : ndarray
Array of counts for each mode.
Examples
--------
>>> a = np.array([[6, 8, 3, 0],
[3, 2, 1, 7],
[8, 1, 8, 4],
[5, 3, 0, 5],
[4, 7, 5, 9]])
>>> from scipy import stats
>>> stats.mode(a)
(array([[ 3., 1., 0., 0.]]), array([[ 1., 1., 1., 1.]]))
To get mode of whole array, specify axis=None:
>>> stats.mode(a, axis=None)
(array([ 3.]), array([ 3.]))
"""
a, axis = _chk_asarray(a, axis)
scores = np.unique(np.ravel(a)) # get ALL unique values
testshape = list(a.shape)
testshape[axis] = 1
oldmostfreq = np.zeros(testshape)
oldcounts = np.zeros(testshape)
for score in scores:
template = (a == score)
counts = np.expand_dims(np.sum(template, axis),axis)
mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
oldcounts = np.maximum(counts, oldcounts)
oldmostfreq = mostfrequent
return mostfrequent, oldcounts
def mask_to_limits(a, limits, inclusive):
"""Mask an array for values outside of given limits.
This is primarily a utility function.
Parameters
----------
a : array
limits : (float or None, float or None)
A tuple consisting of the (lower limit, upper limit). Values in the
input array less than the lower limit or greater than the upper limit
will be masked out. None implies no limit.
inclusive : (bool, bool)
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to lower or upper are allowed.
Returns
-------
A MaskedArray.
Raises
------
A ValueError if there are no values within the given limits.
"""
lower_limit, upper_limit = limits
lower_include, upper_include = inclusive
am = ma.MaskedArray(a)
if lower_limit is not None:
if lower_include:
am = ma.masked_less(am, lower_limit)
else:
am = ma.masked_less_equal(am, lower_limit)
if upper_limit is not None:
if upper_include:
am = ma.masked_greater(am, upper_limit)
else:
am = ma.masked_greater_equal(am, upper_limit)
if am.count() == 0:
raise ValueError("No array values within given limits")
return am
def tmean(a, limits=None, inclusive=(True, True)):
"""
Compute the trimmed mean
This function finds the arithmetic mean of given values, ignoring values
outside the given `limits`.
Parameters
----------
a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
Returns
-------
tmean : float
"""
a = asarray(a)
# Cast to a float if this is an integer array. If it is already a float
# array, leave it as is to preserve its precision.
if issubclass(a.dtype.type, np.integer):
a = a.astype(float)
# No trimming.
if limits is None:
return np.mean(a,None)
am = mask_to_limits(a.ravel(), limits, inclusive)
return am.mean()
def masked_var(am):
m = am.mean()
s = ma.add.reduce((am - m)**2)
n = am.count() - 1.0
return s / n
def tvar(a, limits=None, inclusive=(1,1)):
"""
Compute the trimmed variance
This function computes the sample variance of an array of values,
while ignoring values which are outside of given `limits`.
Parameters
----------
a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
Returns
-------
tvar : float
"""
a = asarray(a)
a = a.astype(float).ravel()
if limits is None:
n = len(a)
return a.var()*(n/(n-1.))
am = mask_to_limits(a, limits, inclusive)
return masked_var(am)
def tmin(a, lowerlimit=None, axis=0, inclusive=True):
"""
Compute the trimmed minimum
This function finds the miminum value of an array `a` along the
specified axis, but only considering values greater than a specified
lower limit.
Parameters
----------
a : array_like
array of values
lowerlimit : None or float, optional
Values in the input array less than the given limit will be ignored.
When lowerlimit is None, then all values are used. The default value
is None.
axis : None or int, optional
Operate along this axis. None means to use the flattened array and
the default is zero
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the lower limit
are included. The default value is True.
Returns
-------
tmin: float
"""
a, axis = _chk_asarray(a, axis)
am = mask_to_limits(a, (lowerlimit, None), (inclusive, False))
return ma.minimum.reduce(am, axis)
def tmax(a, upperlimit, axis=0, inclusive=True):
"""
Compute the trimmed maximum
This function computes the maximum value of an array along a given axis,
while ignoring values larger than a specified upper limit.
Parameters
----------
a : array_like
array of values
upperlimit : None or float, optional
Values in the input array greater than the given limit will be ignored.
When upperlimit is None, then all values are used. The default value
is None.
axis : None or int, optional
Operate along this axis. None means to use the flattened array and
the default is zero.
inclusive : {True, False}, optional
This flag determines whether values exactly equal to the upper limit
are included. The default value is True.
Returns
-------
tmax : float
"""
a, axis = _chk_asarray(a, axis)
am = mask_to_limits(a, (None, upperlimit), (False, inclusive))
return ma.maximum.reduce(am, axis)
def tstd(a, limits=None, inclusive=(1,1)):
"""
Compute the trimmed sample standard deviation
This function finds the sample standard deviation of given values,
ignoring values outside the given `limits`.
Parameters
----------
a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
Returns
-------
tstd : float
"""
return np.sqrt(tvar(a,limits,inclusive))
def tsem(a, limits=None, inclusive=(True,True)):
"""
Compute the trimmed standard error of the mean
This function finds the standard error of the mean for given
values, ignoring values outside the given `limits`.
Parameters
----------
a : array_like
array of values
limits : None or (lower limit, upper limit), optional
Values in the input array less than the lower limit or greater than the
upper limit will be ignored. When limits is None, then all values are
used. Either of the limit values in the tuple can also be None
representing a half-open interval. The default value is None.
inclusive : (bool, bool), optional
A tuple consisting of the (lower flag, upper flag). These flags
determine whether values exactly equal to the lower or upper limits
are included. The default value is (True, True).
Returns
-------
tsem : float
"""
a = np.asarray(a).ravel()
if limits is None:
n = float(len(a))
return a.std()/np.sqrt(n)
am = mask_to_limits(a.ravel(), limits, inclusive)
sd = np.sqrt(masked_var(am))
return sd / am.count()
#####################################
############ MOMENTS #############
#####################################
def moment(a, moment=1, axis=0):
"""
Calculates the nth moment about the mean for a sample.
Generally used to calculate coefficients of skewness and
kurtosis.
Parameters
----------
a : array_like
data
moment : int
order of central moment that is returned
axis : int or None
Axis along which the central moment is computed. If None, then the data
array is raveled. The default axis is zero.
Returns
-------
n-th central moment : ndarray or float
The appropriate moment along the given axis or over all values if axis
is None. The denominator for the moment calculation is the number of
observations, no degrees of freedom correction is done.
"""
a, axis = _chk_asarray(a, axis)
if moment == 1:
# By definition the first moment about the mean is 0.
shape = list(a.shape)
del shape[axis]
if shape:
# return an actual array of the appropriate shape
return np.zeros(shape, dtype=float)
else:
# the input was 1D, so return a scalar instead of a rank-0 array
return np.float64(0.0)
else:
mn = np.expand_dims(np.mean(a,axis), axis)
s = np.power((a-mn), moment)
return np.mean(s, axis)
def variation(a, axis=0):
"""
Computes the coefficient of variation, the ratio of the biased standard
deviation to the mean.
Parameters
----------
a : array_like
Input array.
axis : int or None
Axis along which to calculate the coefficient of variation.
References
----------
[CRCProbStat2000]_ Section 2.2.20
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
return a.std(axis)/a.mean(axis)
def skew(a, axis=0, bias=True):
"""
Computes the skewness of a data set.
For normally distributed data, the skewness should be about 0. A skewness
value > 0 means that there is more weight in the left tail of the
distribution. The function `skewtest` can be used to determine if the
skewness value is close enough to 0, statistically speaking.
Parameters
----------
a : ndarray
data
axis : int or None
axis along which skewness is calculated
bias : bool
If False, then the calculations are corrected for statistical bias.
Returns
-------
skewness : ndarray
The skewness of values along an axis, returning 0 where all values are
equal.
References
----------
[CRCProbStat2000]_ Section 2.2.24.1
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
a, axis = _chk_asarray(a,axis)
n = a.shape[axis]
m2 = moment(a, 2, axis)
m3 = moment(a, 3, axis)
zero = (m2 == 0)
vals = np.where(zero, 0, m3 / m2**1.5)
if not bias:
can_correct = (n > 2) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m3 = np.extract(can_correct, m3)
nval = np.sqrt((n-1.0)*n)/(n-2.0)*m3/m2**1.5
np.place(vals, can_correct, nval)
if vals.ndim == 0:
return vals.item()
return vals
def kurtosis(a, axis=0, fisher=True, bias=True):
"""
Computes the kurtosis (Fisher or Pearson) of a dataset.
Kurtosis is the fourth central moment divided by the square of the
variance. If Fisher's definition is used, then 3.0 is subtracted from
the result to give 0.0 for a normal distribution.
If bias is False then the kurtosis is calculated using k statistics to
eliminate bias coming from biased moment estimators
Use `kurtosistest` to see if result is close enough to normal.
Parameters
----------
a : array
data for which the kurtosis is calculated
axis : int or None
Axis along which the kurtosis is calculated
fisher : bool
If True, Fisher's definition is used (normal ==> 0.0). If False,
Pearson's definition is used (normal ==> 3.0).
bias : bool
If False, then the calculations are corrected for statistical bias.
Returns
-------
kurtosis : array
The kurtosis of values along an axis. If all values are equal,
return -3 for Fisher's definition and 0 for Pearson's definition.
References
----------
[CRCProbStat2000]_ Section 2.2.25
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
m2 = moment(a,2,axis)
m4 = moment(a,4,axis)
zero = (m2 == 0)
vals = np.where(zero, 0, m4/ m2**2.0)
if not bias:
can_correct = (n > 3) & (m2 > 0)
if can_correct.any():
m2 = np.extract(can_correct, m2)
m4 = np.extract(can_correct, m4)
nval = 1.0/(n-2)/(n-3)*((n*n-1.0)*m4/m2**2.0-3*(n-1)**2.0)
np.place(vals, can_correct, nval+3.0)
if vals.ndim == 0:
vals = vals.item() # array scalar
if fisher:
return vals - 3
else:
return vals
def describe(a, axis=0):
"""
Computes several descriptive statistics of the passed array.
Parameters
----------
a : array_like
data
axis : int or None
axis along which statistics are calculated. If axis is None, then data
array is raveled. The default axis is zero.
Returns
-------
size of the data : int
length of data along axis
(min, max): tuple of ndarrays or floats
minimum and maximum value of data array
arithmetic mean : ndarray or float
mean of data along axis
unbiased variance : ndarray or float
variance of the data along axis, denominator is number of observations
minus one.
biased skewness : ndarray or float
skewness, based on moment calculations with denominator equal to the
number of observations, i.e. no degrees of freedom correction
biased kurtosis : ndarray or float
kurtosis (Fisher), the kurtosis is normalized so that it is zero for the
normal distribution. No degrees of freedom or bias correction is used.
See Also
--------
skew
kurtosis
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
#mm = (np.minimum.reduce(a), np.maximum.reduce(a))
mm = (np.min(a, axis=axis), np.max(a, axis=axis))
m = np.mean(a, axis=axis)
v = np.var(a, axis=axis, ddof=1)
sk = skew(a, axis)
kurt = kurtosis(a, axis)
return n, mm, m, v, sk, kurt
#####################################
######## NORMALITY TESTS ##########
#####################################
def skewtest(a, axis=0):
"""
Tests whether the skew is different from the normal distribution.
This function tests the null hypothesis that the skewness of
the population that the sample was drawn from is the same
as that of a corresponding normal distribution.
Parameters
----------
a : array
axis : int or None
Returns
-------
z-score : float
The computed z-score for this test.
p-value : float
a 2-sided p-value for the hypothesis test
Notes
-----
The sample size must be at least 8.
"""
a, axis = _chk_asarray(a, axis)
if axis is None:
a = np.ravel(a)
axis = 0
b2 = skew(a, axis)
n = float(a.shape[axis])
if n < 8:
raise ValueError(
"skewtest is not valid with less than 8 samples; %i samples"
" were given." % int(n))
y = b2 * math.sqrt(((n + 1) * (n + 3)) / (6.0 * (n - 2)))
beta2 = (3.0 * (n * n + 27 * n - 70) * (n + 1) * (n + 3) /
((n - 2.0) * (n + 5) * (n + 7) * (n + 9)))
W2 = -1 + math.sqrt(2 * (beta2 - 1))
delta = 1 / math.sqrt(0.5 * math.log(W2))
alpha = math.sqrt(2.0 / (W2 - 1))
y = np.where(y == 0, 1, y)
Z = delta * np.log(y / alpha + np.sqrt((y / alpha) ** 2 + 1))
return Z, 2 * distributions.norm.sf(np.abs(Z))
def kurtosistest(a, axis=0):
"""
Tests whether a dataset has normal kurtosis
This function tests the null hypothesis that the kurtosis
of the population from which the sample was drawn is that
of the normal distribution: ``kurtosis = 3(n-1)/(n+1)``.
Parameters
----------
a : array
array of the sample data
axis : int or None
the axis to operate along, or None to work on the whole array.
The default is the first axis.
Returns
-------
z-score : float
The computed z-score for this test.
p-value : float
The 2-sided p-value for the hypothesis test
Notes
-----
Valid only for n>20. The Z-score is set to 0 for bad entries.
"""
a, axis = _chk_asarray(a, axis)
n = float(a.shape[axis])
if n < 20:
warnings.warn(
"kurtosistest only valid for n>=20 ... continuing anyway, n=%i" %
int(n))
b2 = kurtosis(a, axis, fisher=False)
E = 3.0*(n-1) /(n+1)
varb2 = 24.0*n*(n-2)*(n-3) / ((n+1)*(n+1)*(n+3)*(n+5))
x = (b2-E)/np.sqrt(varb2)
sqrtbeta1 = 6.0*(n*n-5*n+2)/((n+7)*(n+9)) * np.sqrt((6.0*(n+3)*(n+5))/
(n*(n-2)*(n-3)))
A = 6.0 + 8.0/sqrtbeta1 *(2.0/sqrtbeta1 + np.sqrt(1+4.0/(sqrtbeta1**2)))
term1 = 1 -2/(9.0*A)
denom = 1 +x*np.sqrt(2/(A-4.0))
denom = np.where(denom < 0, 99, denom)
term2 = np.where(denom < 0, term1, np.power((1-2.0/A)/denom,1/3.0))
Z = ( term1 - term2 ) / np.sqrt(2/(9.0*A))
Z = np.where(denom == 99, 0, Z)
if Z.ndim == 0:
Z = Z[()]
#JPNote: p-value sometimes larger than 1
#zprob uses upper tail, so Z needs to be positive
return Z, 2 * distributions.norm.sf(np.abs(Z))
def normaltest(a, axis=0):
"""
Tests whether a sample differs from a normal distribution.
This function tests the null hypothesis that a sample comes
from a normal distribution. It is based on D'Agostino and
Pearson's [1]_, [2]_ test that combines skew and kurtosis to
produce an omnibus test of normality.
Parameters
----------
a : array_like
The array containing the data to be tested.
axis : int or None
If None, the array is treated as a single data set, regardless of
its shape. Otherwise, each 1-d array along axis `axis` is tested.
Returns
-------
k2 : float or array
`s^2 + k^2`, where `s` is the z-score returned by `skewtest` and
`k` is the z-score returned by `kurtosistest`.
p-value : float or array
A 2-sided chi squared probability for the hypothesis test.
References
----------
.. [1] D'Agostino, R. B. (1971), "An omnibus test of normality for
moderate and large sample size," Biometrika, 58, 341-348
.. [2] D'Agostino, R. and Pearson, E. S. (1973), "Testing for
departures from normality," Biometrika, 60, 613-622
"""
a, axis = _chk_asarray(a, axis)
s,p = skewtest(a,axis)
k,p = kurtosistest(a,axis)
k2 = s*s + k*k
return k2, chisqprob(k2,2)
# Martinez-Iglewicz test
# K-S test
#####################################
###### FREQUENCY FUNCTIONS #######
#####################################
def itemfreq(a):
"""
Returns a 2D array of item frequencies.
Parameters
----------
a : array_like of rank 1
Input array.
Returns
-------
itemfreq : ndarray of rank 2
A 2D frequency table (col [0:n-1]=scores, col n=frequencies).
Column 1 contains item values, column 2 contains their respective
counts.
Notes
-----
This uses a loop that is only reasonably fast if the number of unique
elements is not large. For integers, numpy.bincount is much faster.
This function currently does not support strings or multi-dimensional
scores.
Examples
--------
>>> a = np.array([1, 1, 5, 0, 1, 2, 2, 0, 1, 4])
>>> stats.itemfreq(a)
array([[ 0., 2.],
[ 1., 4.],
[ 2., 2.],
[ 4., 1.],
[ 5., 1.]])
>>> np.bincount(a)
array([2, 4, 2, 0, 1, 1])
>>> stats.itemfreq(a/10.)
array([[ 0. , 2. ],
[ 0.1, 4. ],
[ 0.2, 2. ],
[ 0.4, 1. ],
[ 0.5, 1. ]])
"""
# TODO: I'm not sure I understand what this does. The docstring is
# internally inconsistent.
# comment: fortunately, this function doesn't appear to be used elsewhere
scores = _support.unique(a)
scores = np.sort(scores)
freq = zeros(len(scores))
for i in range(len(scores)):
freq[i] = np.add.reduce(np.equal(a,scores[i]))
return array(_support.abut(scores, freq))
def _interpolate(a, b, fraction):
"""Returns the point at the given fraction between a and b, where
'fraction' must be between 0 and 1.
"""
return a + (b - a)*fraction;
def scoreatpercentile(a, per, limit=()):
"""
Calculate the score at the given `per` percentile of the sequence `a`.
For example, the score at per=50 is the median. If the desired quantile
lies between two data points, we interpolate between them. If the parameter
`limit` is provided, it should be a tuple (lower, upper) of two values.
Values of `a` outside this (closed) interval will be ignored.
Parameters
----------
a : ndarray
Values from which to extract score.
per : int or float
Percentile at which to extract score.
limit : tuple, optional
Tuple of two scalars, the lower and upper limits within which to
compute the percentile.
Returns
-------
score : float
Score at percentile.
See Also
--------
percentileofscore
Examples
--------
>>> from scipy import stats
>>> a = np.arange(100)
>>> stats.scoreatpercentile(a, 50)
49.5
"""
# TODO: this should be a simple wrapper around a well-written quantile
# function. GNU R provides 9 quantile algorithms (!), with differing
# behaviour at, for example, discontinuities.
values = np.sort(a,axis=0)
if limit:
values = values[(limit[0] <= values) & (values <= limit[1])]
idx = per /100. * (values.shape[0] - 1)
if (idx % 1 == 0):
return values[idx]
else:
return _interpolate(values[int(idx)], values[int(idx) + 1], idx % 1)
def percentileofscore(a, score, kind='rank'):
'''
The percentile rank of a score relative to a list of scores.
A `percentileofscore` of, for example, 80% means that 80% of the
scores in `a` are below the given score. In the case of gaps or
ties, the exact definition depends on the optional keyword, `kind`.
Parameters
----------
a: array like
Array of scores to which `score` is compared.
score: int or float
Score that is compared to the elements in `a`.
kind: {'rank', 'weak', 'strict', 'mean'}, optional
This optional parameter specifies the interpretation of the
resulting score:
- "rank": Average percentage ranking of score. In case of
multiple matches, average the percentage rankings of
all matching scores.
- "weak": This kind corresponds to the definition of a cumulative
distribution function. A percentileofscore of 80%
means that 80% of values are less than or equal
to the provided score.
- "strict": Similar to "weak", except that only values that are
strictly less than the given score are counted.
- "mean": The average of the "weak" and "strict" scores, often used in
testing. See
http://en.wikipedia.org/wiki/Percentile_rank
Returns
-------
pcos : float
Percentile-position of score (0-100) relative to `a`.
Examples
--------
Three-quarters of the given values lie below a given score:
>>> percentileofscore([1, 2, 3, 4], 3)
75.0
With multiple matches, note how the scores of the two matches, 0.6
and 0.8 respectively, are averaged:
>>> percentileofscore([1, 2, 3, 3, 4], 3)
70.0
Only 2/5 values are strictly less than 3:
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='strict')
40.0
But 4/5 values are less than or equal to 3:
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='weak')
80.0
The average between the weak and the strict scores is
>>> percentileofscore([1, 2, 3, 3, 4], 3, kind='mean')
60.0
'''
a = np.array(a)
n = len(a)
if kind == 'rank':
if not(np.any(a == score)):
a = np.append(a, score)
a_len = np.array(range(len(a)))
else:
a_len = np.array(range(len(a))) + 1.0
a = np.sort(a)
idx = [a == score]
pct = (np.mean(a_len[idx]) / n) * 100.0
return pct
elif kind == 'strict':
return sum(a < score) / float(n) * 100
elif kind == 'weak':
return sum(a <= score) / float(n) * 100
elif kind == 'mean':
return (sum(a < score) + sum(a <= score)) * 50 / float(n)
else:
raise ValueError("kind can only be 'rank', 'strict', 'weak' or 'mean'")
def histogram2(a, bins):
"""
Compute histogram using divisions in bins.
Count the number of times values from array `a` fall into
numerical ranges defined by `bins`. Range x is given by
bins[x] <= range_x < bins[x+1] where x =0,N and N is the
length of the `bins` array. The last range is given by
bins[N] <= range_N < infinity. Values less than bins[0] are
not included in the histogram.
Parameters
----------
a : array_like of rank 1
The array of values to be assigned into bins
bins : array_like of rank 1
Defines the ranges of values to use during histogramming.
Returns
-------
histogram2 : ndarray of rank 1
Each value represents the occurrences for a given bin (range) of
values.
"""
# comment: probably obsoleted by numpy.histogram()
n = np.searchsorted(np.sort(a), bins)
n = np.concatenate([ n, [len(a)]])
return n[ 1:]-n[:-1]
def histogram(a, numbins=10, defaultlimits=None, weights=None, printextras=False):
"""
Separates the range into several bins and returns the number of instances
of a in each bin. This histogram is based on numpy's histogram but has a
larger range by default if default limits is not set.
Parameters
----------
a: array_like
Array of scores which will be put into bins.
numbins: int, optional
The number of bins to use for the histogram. Default is 10.
defaultlimits: tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger then the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights: array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
printextras: bool, optional
If True, the number of extra points is printed to standard output.
Default is False.
Returns
-------
histogram: ndarray
Number of points (or sum of weights) in each bin.
low_range: float
Lowest value of histogram, the lower limit of the first bin.
binsize: float
The size of the bins (all bins have the same size).
extrapoints: int
The number of points outside the range of the histogram.
See Also
--------
numpy.histogram
"""
a = np.ravel(a) # flatten any >1D arrays
if defaultlimits is None:
# no range given, so use values in a
data_min = a.min()
data_max = a.max()
# Have bins extend past min and max values slightly
s = (data_max - data_min) / (2. * (numbins - 1.))
defaultlimits = (data_min - s, data_max + s)
# use numpy's histogram method to compute bins
hist, bin_edges = np.histogram(a, bins=numbins, range=defaultlimits,
weights=weights)
# hist are not always floats, convert to keep with old output
hist = np.array(hist, dtype=float)
# fixed width for bins is assumed, as numpy's histogram gives
# fixed width bins for int values for 'bins'
binsize = bin_edges[1] - bin_edges[0]
# calculate number of extra points
extrapoints = len([v for v in a
if defaultlimits[0] > v or v > defaultlimits[1]])
if extrapoints > 0 and printextras:
warnings.warn("Points outside given histogram range = %s" \
%extrapoints)
return (hist, defaultlimits[0], binsize, extrapoints)
def cumfreq(a, numbins=10, defaultreallimits=None, weights=None):
"""
Returns a cumulative frequency histogram, using the histogram function.
Parameters
----------
a : array_like
Input array.
numbins: int, optional
The number of bins to use for the histogram. Default is 10.
defaultlimits: tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger then the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights: array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
Returns
-------
cumfreq : ndarray
Binned values of cumulative frequency.
lowerreallimit : float
Lower real limit
binsize : float
Width of each bin.
extrapoints : int
Extra points.
Examples
--------
>>> x = [1, 4, 2, 1, 3, 1]
>>> cumfreqs, lowlim, binsize, extrapoints = sp.stats.cumfreq(x, numbins=4)
>>> cumfreqs
array([ 3., 4., 5., 6.])
>>> cumfreqs, lowlim, binsize, extrapoints = \
... sp.stats.cumfreq(x, numbins=4, defaultreallimits=(1.5, 5))
>>> cumfreqs
array([ 1., 2., 3., 3.])
>>> extrapoints
3
"""
h,l,b,e = histogram(a, numbins, defaultreallimits, weights=weights)
cumhist = np.cumsum(h*1, axis=0)
return cumhist,l,b,e
def relfreq(a, numbins=10, defaultreallimits=None, weights=None):
"""
Returns a relative frequency histogram, using the histogram function.
Parameters
----------
a : array_like
Input array.
numbins: int, optional
The number of bins to use for the histogram. Default is 10.
defaultreallimits: tuple (lower, upper), optional
The lower and upper values for the range of the histogram.
If no value is given, a range slightly larger then the range of the
values in a is used. Specifically ``(a.min() - s, a.max() + s)``,
where ``s = (1/2)(a.max() - a.min()) / (numbins - 1)``.
weights: array_like, optional
The weights for each value in `a`. Default is None, which gives each
value a weight of 1.0
Returns
-------
relfreq : ndarray
Binned values of relative frequency.
lowerreallimit : float
Lower real limit
binsize : float
Width of each bin.
extrapoints : int
Extra points.
Examples
--------
>>> a = np.array([1, 4, 2, 1, 3, 1])
>>> relfreqs, lowlim, binsize, extrapoints = sp.stats.relfreq(a, numbins=4)
>>> relfreqs
array([ 0.5 , 0.16666667, 0.16666667, 0.16666667])
>>> np.sum(relfreqs) # relative frequencies should add up to 1
0.99999999999999989
"""
h, l, b, e = histogram(a, numbins, defaultreallimits, weights=weights)
h = np.array(h / float(np.array(a).shape[0]))
return h, l, b, e
#####################################
###### VARIABILITY FUNCTIONS #####
#####################################
def obrientransform(*args):
"""
Computes a transform on input data (any number of columns).
Used to test for homogeneity of variance prior to running one-way stats.
Each array in *args is one level of a factor. If an F_oneway() run on the
transformed data and found significant, variances are unequal. From
Maxwell and Delaney, p.112.
Returns
-------
Transformed data for use in an ANOVA
"""
TINY = 1e-10
k = len(args)
n = zeros(k)
v = zeros(k)
m = zeros(k)
nargs = []
for i in range(k):
nargs.append(args[i].astype(float))
n[i] = float(len(nargs[i]))
v[i] = np.var(nargs[i], ddof=1)
m[i] = np.mean(nargs[i])
for j in range(k):
for i in range(int(n[j])):
t1 = (n[j]-1.5)*n[j]*(nargs[j][i]-m[j])**2
t2 = 0.5*v[j]*(n[j]-1.0)
t3 = (n[j]-1.0)*(n[j]-2.0)
nargs[j][i] = (t1-t2) / float(t3)
check = 1
for j in range(k):
if v[j] - np.mean(nargs[j]) > TINY:
check = 0
if check != 1:
raise ValueError('Lack of convergence in obrientransform.')
else:
return array(nargs)
def signaltonoise(a, axis=0, ddof=0):
"""
The signal-to-noise ratio of the input data.
Returns the signal-to-noise ratio of `a`, here defined as the mean
divided by the standard deviation.
Parameters
----------
a: array_like
An array_like object containing the sample data.
axis: int or None, optional
If axis is equal to None, the array is first ravel'd. If axis is an
integer, this is the axis over which to operate. Default is 0.
ddof : int, optional
Degrees of freedom correction for standard deviation. Default is 0.
Returns
-------
s2n : ndarray
The mean to standard deviation ratio(s) along `axis`, or 0 where the
standard deviation is 0.
"""
a = np.asanyarray(a)
m = a.mean(axis)
sd = a.std(axis=axis, ddof=ddof)
return np.where(sd == 0, 0, m/sd)
def sem(a, axis=0, ddof=1):
"""
Calculates the standard error of the mean (or standard error of
measurement) of the values in the input array.
Parameters
----------
a : array_like
An array containing the values for which the standard error is
returned.
axis : int or None, optional.
If axis is None, ravel `a` first. If axis is an integer, this will be
the axis over which to operate. Defaults to 0.
ddof : int, optional
Delta degrees-of-freedom. How many degrees of freedom to adjust
for bias in limited samples relative to the population estimate
of variance. Defaults to 1.
Returns
-------
s : ndarray or float
The standard error of the mean in the sample(s), along the input axis.
Notes
-----
The default value for `ddof` is different to the default (0) used by other
ddof containing routines, such as np.std nd stats.nanstd.
Examples
--------
Find standard error along the first axis:
>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.sem(a)
array([ 2.8284, 2.8284, 2.8284, 2.8284])
Find standard error across the whole array, using n degrees of freedom:
>>> stats.sem(a, axis=None, ddof=0)
1.2893796958227628
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
s = np.std(a,axis=axis, ddof=ddof) / np.sqrt(n) #JP check normalization
return s
def zscore(a, axis=0, ddof=0):
"""
Calculates the z score of each value in the sample, relative to the sample
mean and standard deviation.
Parameters
----------
a : array_like
An array like object containing the sample data.
axis : int or None, optional
If `axis` is equal to None, the array is first raveled. If `axis` is
an integer, this is the axis over which to operate. Default is 0.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
Returns
-------
zscore : array_like
The z-scores, standardized by mean and standard deviation of input
array `a`.
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses `asanyarray` instead of `asarray`
for parameters).
Examples
--------
>>> a = np.array([ 0.7972, 0.0767, 0.4383, 0.7866, 0.8091, 0.1954,
0.6307, 0.6599, 0.1065, 0.0508])
>>> from scipy import stats
>>> stats.zscore(a)
array([ 1.1273, -1.247 , -0.0552, 1.0923, 1.1664, -0.8559, 0.5786,
0.6748, -1.1488, -1.3324])
Computing along a specified axis, using n-1 degrees of freedom (``ddof=1``)
to calculate the standard deviation:
>>> b = np.array([[ 0.3148, 0.0478, 0.6243, 0.4608],
[ 0.7149, 0.0775, 0.6072, 0.9656],
[ 0.6341, 0.1403, 0.9759, 0.4064],
[ 0.5918, 0.6948, 0.904 , 0.3721],
[ 0.0921, 0.2481, 0.1188, 0.1366]])
>>> stats.zscore(b, axis=1, ddof=1)
array([[-0.19264823, -1.28415119, 1.07259584, 0.40420358],
[ 0.33048416, -1.37380874, 0.04251374, 1.00081084],
[ 0.26796377, -1.12598418, 1.23283094, -0.37481053],
[-0.22095197, 0.24468594, 1.19042819, -1.21416216],
[-0.82780366, 1.4457416 , -0.43867764, -0.1792603 ]])
"""
a = np.asanyarray(a)
mns = a.mean(axis=axis)
sstd = a.std(axis=axis, ddof=ddof)
if axis and mns.ndim < a.ndim:
return ((a - np.expand_dims(mns, axis=axis)) /
np.expand_dims(sstd,axis=axis))
else:
return (a - mns) / sstd
def zmap(scores, compare, axis=0, ddof=0):
"""
Calculates the relative z-scores.
Returns an array of z-scores, i.e., scores that are standardized to zero
mean and unit variance, where mean and variance are calculated from the
comparison array.
Parameters
----------
scores : array_like
The input for which z-scores are calculated.
compare : array_like
The input from which the mean and standard deviation of the
normalization are taken; assumed to have the same dimension as
`scores`.
axis : int or None, optional
Axis over which mean and variance of `compare` are calculated.
Default is 0.
ddof : int, optional
Degrees of freedom correction in the calculation of the
standard deviation. Default is 0.
Returns
-------
zscore : array_like
Z-scores, in the same shape as `scores`.
Notes
-----
This function preserves ndarray subclasses, and works also with
matrices and masked arrays (it uses `asanyarray` instead of `asarray`
for parameters).
Examples
--------
>>> a = [0.5, 2.0, 2.5, 3]
>>> b = [0, 1, 2, 3, 4]
>>> zmap(a, b)
array([-1.06066017, 0. , 0.35355339, 0.70710678])
"""
scores, compare = map(np.asanyarray, [scores, compare])
mns = compare.mean(axis=axis)
sstd = compare.std(axis=axis, ddof=ddof)
if axis and mns.ndim < compare.ndim:
return ((scores - np.expand_dims(mns, axis=axis)) /
np.expand_dims(sstd,axis=axis))
else:
return (scores - mns) / sstd
#####################################
####### TRIMMING FUNCTIONS #######
#####################################
def threshold(a, threshmin=None, threshmax=None, newval=0):
"""
Clip array to a given value.
Similar to numpy.clip(), except that values less than `threshmin` or
greater than `threshmax` are replaced by `newval`, instead of by
`threshmin` and `threshmax` respectively.
Parameters
----------
a : array_like
Data to threshold.
threshmin : float, int or None, optional
Minimum threshold, defaults to None.
threshmax : float, int or None, optional
Maximum threshold, defaults to None.
newval : float or int, optional
Value to put in place of values in `a` outside of bounds.
Defaults to 0.
Returns
-------
out : ndarray
The clipped input array, with values less than `threshmin` or
greater than `threshmax` replaced with `newval`.
Examples
--------
>>> a = np.array([9, 9, 6, 3, 1, 6, 1, 0, 0, 8])
>>> from scipy import stats
>>> stats.threshold(a, threshmin=2, threshmax=8, newval=-1)
array([-1, -1, 6, 3, -1, 6, -1, -1, -1, 8])
"""
a = asarray(a).copy()
mask = zeros(a.shape, dtype=bool)
if threshmin is not None:
mask |= (a < threshmin)
if threshmax is not None:
mask |= (a > threshmax)
a[mask] = newval
return a
def sigmaclip(a, low=4., high=4.):
"""
Iterative sigma-clipping of array elements.
The output array contains only those elements of the input array `c`
that satisfy the conditions ::
mean(c) - std(c)*low < c < mean(c) + std(c)*high
Starting from the full sample, all elements outside the critical range are
removed. The iteration continues with a new critical range until no
elements are outside the range.
Parameters
----------
a : array_like
Data array, will be raveled if not 1-D.
low : float, optional
Lower bound factor of sigma clipping. Default is 4.
high : float, optional
Upper bound factor of sigma clipping. Default is 4.
Returns
-------
c : ndarray
Input array with clipped elements removed.
critlower : float
Lower threshold value use for clipping.
critlupper : float
Upper threshold value use for clipping.
Examples
--------
>>> a = np.concatenate((np.linspace(9.5,10.5,31), np.linspace(0,20,5)))
>>> fact = 1.5
>>> c, low, upp = sigmaclip(a, fact, fact)
>>> c
array([ 9.96666667, 10. , 10.03333333, 10. ])
>>> c.var(), c.std()
(0.00055555555555555165, 0.023570226039551501)
>>> low, c.mean() - fact*c.std(), c.min()
(9.9646446609406727, 9.9646446609406727, 9.9666666666666668)
>>> upp, c.mean() + fact*c.std(), c.max()
(10.035355339059327, 10.035355339059327, 10.033333333333333)
>>> a = np.concatenate((np.linspace(9.5,10.5,11),
np.linspace(-100,-50,3)))
>>> c, low, upp = sigmaclip(a, 1.8, 1.8)
>>> (c == np.linspace(9.5,10.5,11)).all()
True
"""
c = np.asarray(a).ravel()
delta = 1
while delta:
c_std = c.std()
c_mean = c.mean()
size = c.size
critlower = c_mean - c_std*low
critupper = c_mean + c_std*high
c = c[(c>critlower) & (c<critupper)]
delta = size-c.size
return c, critlower, critupper
def trimboth(a, proportiontocut):
"""
Slices off a proportion of items from both ends of an array.
Slices off the passed proportion of items from both ends of the passed
array (i.e., with `proportiontocut` = 0.1, slices leftmost 10% **and**
rightmost 10% of scores). You must pre-sort the array if you want
'proper' trimming. Slices off less if proportion results in a
non-integer slice index (i.e., conservatively slices off
`proportiontocut`).
Parameters
----------
a : array_like
Data to trim.
proportiontocut : float or int
Proportion of total data set to trim of each end.
Returns
-------
out : ndarray
Trimmed version of array `a`.
Examples
--------
>>> from scipy import stats
>>> a = np.arange(20)
>>> b = stats.trimboth(a, 0.1)
>>> b.shape
(16,)
"""
a = asarray(a)
lowercut = int(proportiontocut*len(a))
uppercut = len(a) - lowercut
if (lowercut >= uppercut):
raise ValueError("Proportion too big.")
return a[lowercut:uppercut]
def trim1(a, proportiontocut, tail='right'):
"""
Slices off a proportion of items from ONE end of the passed array
distribution.
If `proportiontocut` = 0.1, slices off 'leftmost' or 'rightmost'
10% of scores. Slices off LESS if proportion results in a non-integer
slice index (i.e., conservatively slices off `proportiontocut` ).
Parameters
----------
a : array_like
Input array
proportiontocut : float
Fraction to cut off of 'left' or 'right' of distribution
tail : string, {'left', 'right'}, optional
Defaults to 'right'.
Returns
-------
trim1 : ndarray
Trimmed version of array `a`
"""
a = asarray(a)
if tail.lower() == 'right':
lowercut = 0
uppercut = len(a) - int(proportiontocut*len(a))
elif tail.lower() == 'left':
lowercut = int(proportiontocut*len(a))
uppercut = len(a)
return a[lowercut:uppercut]
def trim_mean(a, proportiontocut):
"""
Return mean of array after trimming distribution from both lower and upper
tails.
If `proportiontocut` = 0.1, slices off 'leftmost' and 'rightmost' 10% of
scores. Slices off LESS if proportion results in a non-integer slice
index (i.e., conservatively slices off `proportiontocut` ).
Parameters
----------
a : array_like
Input array
proportiontocut : float
Fraction to cut off of both tails of the distribution
Returns
-------
trim_mean : ndarray
Mean of trimmed array.
"""
newa = trimboth(np.sort(a),proportiontocut)
return np.mean(newa,axis=0)
def f_oneway(*args):
"""
Performs a 1-way ANOVA.
The one-way ANOVA tests the null hypothesis that two or more groups have
the same population mean. The test is applied to samples from two or
more groups, possibly with differing sizes.
Parameters
----------
sample1, sample2, ... : array_like
The sample measurements for each group.
Returns
-------
F-value : float
The computed F-value of the test.
p-value : float
The associated p-value from the F-distribution.
Notes
-----
The ANOVA test has important assumptions that must be satisfied in order
for the associated p-value to be valid.
1. The samples are independent.
2. Each sample is from a normally distributed population.
3. The population standard deviations of the groups are all equal. This
property is known as homoscedasticity.
If these assumptions are not true for a given set of data, it may still be
possible to use the Kruskal-Wallis H-test (`stats.kruskal`_) although with
some loss of power.
The algorithm is from Heiman[2], pp.394-7.
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 14. http://faculty.vassar.edu/lowry/ch14pt1.html
.. [2] Heiman, G.W. Research Methods in Statistics. 2002.
"""
na = len(args) # ANOVA on 'na' groups, each in it's own array
tmp = map(np.array,args)
alldata = np.concatenate(args)
bign = len(alldata)
sstot = ss(alldata)-(square_of_sums(alldata)/float(bign))
ssbn = 0
for a in args:
ssbn = ssbn + square_of_sums(array(a))/float(len(a))
ssbn = ssbn - (square_of_sums(alldata)/float(bign))
sswn = sstot-ssbn
dfbn = na-1
dfwn = bign - na
msb = ssbn/float(dfbn)
msw = sswn/float(dfwn)
f = msb/msw
prob = fprob(dfbn,dfwn,f)
return f, prob
def pearsonr(x, y):
"""Calculates a Pearson correlation coefficient and the p-value for testing
non-correlation.
The Pearson correlation coefficient measures the linear relationship
between two datasets. Strictly speaking, Pearson's correlation requires
that each dataset be normally distributed. Like other correlation
coefficients, this one varies between -1 and +1 with 0 implying no
correlation. Correlations of -1 or +1 imply an exact linear
relationship. Positive correlations imply that as x increases, so does
y. Negative correlations imply that as x increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Pearson correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
x : 1D array
y : 1D array the same length as x
Returns
-------
(Pearson's correlation coefficient,
2-tailed p-value)
References
----------
http://www.statsoft.com/textbook/glosp.html#Pearson%20Correlation
"""
# x and y should have same length.
x = np.asarray(x)
y = np.asarray(y)
n = len(x)
mx = x.mean()
my = y.mean()
xm, ym = x-mx, y-my
r_num = n*(np.add.reduce(xm*ym))
r_den = n*np.sqrt(ss(xm)*ss(ym))
r = (r_num / r_den)
# Presumably, if abs(r) > 1, then it is only some small artifact of floating
# point arithmetic.
r = max(min(r, 1.0), -1.0)
df = n-2
if abs(r) == 1.0:
prob = 0.0
else:
t_squared = r*r * (df / ((1.0 - r) * (1.0 + r)))
prob = betai(0.5*df, 0.5, df / (df + t_squared))
return r, prob
def fisher_exact(table, alternative='two-sided'):
"""Performs a Fisher exact test on a 2x2 contingency table.
Parameters
----------
table : array_like of ints
A 2x2 contingency table. Elements should be non-negative integers.
alternative : {'two-sided', 'less', 'greater'}, optional
Which alternative hypothesis to the null hypothesis the test uses.
Default is 'two-sided'.
Returns
-------
oddsratio : float
This is prior odds ratio and not a posterior estimate.
p_value : float
P-value, the probability of obtaining a distribution at least as
extreme as the one that was actually observed, assuming that the
null hypothesis is true.
See Also
--------
chi2_contingency : Chi-square test of independence of variables in a
contingency table.
Notes
-----
The calculated odds ratio is different from the one R uses. In R language,
this implementation returns the (more common) "unconditional Maximum
Likelihood Estimate", while R uses the "conditional Maximum Likelihood
Estimate".
For tables with large numbers the (inexact) chi-square test implemented
in the function `chi2_contingency` can also be used.
Examples
--------
Say we spend a few days counting whales and sharks in the Atlantic and
Indian oceans. In the Atlantic ocean we find 8 whales and 1 shark, in the
Indian ocean 2 whales and 5 sharks. Then our contingency table is::
Atlantic Indian
whales 8 2
sharks 1 5
We use this table to find the p-value:
>>> oddsratio, pvalue = stats.fisher_exact([[8, 2], [1, 5]])
>>> pvalue
0.0349...
The probability that we would observe this or an even more imbalanced ratio
by chance is about 3.5%. A commonly used significance level is 5%, if we
adopt that we can therefore conclude that our observed imbalance is
statistically significant; whales prefer the Atlantic while sharks prefer
the Indian ocean.
"""
hypergeom = distributions.hypergeom
c = np.asarray(table, dtype=np.int64) # int32 is not enough for the algorithm
if not c.shape == (2, 2):
raise ValueError("The input `table` must be of shape (2, 2).")
if np.any(c < 0):
raise ValueError("All values in `table` must be nonnegative.")
if 0 in c.sum(axis=0) or 0 in c.sum(axis=1):
# If both values in a row or column are zero, the p-value is 1 and
# the odds ratio is NaN.
return np.nan, 1.0
if c[1,0] > 0 and c[0,1] > 0:
oddsratio = c[0,0] * c[1,1] / float(c[1,0] * c[0,1])
else:
oddsratio = np.inf
n1 = c[0,0] + c[0,1]
n2 = c[1,0] + c[1,1]
n = c[0,0] + c[1,0]
def binary_search(n, n1, n2, side):
"""Binary search for where to begin lower/upper halves in two-sided
test.
"""
if side == "upper":
minval = mode
maxval = n
else:
minval = 0
maxval = mode
guess = -1
while maxval - minval > 1:
if maxval == minval + 1 and guess == minval:
guess = maxval
else:
guess = (maxval + minval) // 2
pguess = hypergeom.pmf(guess, n1 + n2, n1, n)
if side == "upper":
ng = guess - 1
else:
ng = guess + 1
if pguess <= pexact and hypergeom.pmf(ng, n1 + n2, n1, n) > pexact:
break
elif pguess < pexact:
maxval = guess
else:
minval = guess
if guess == -1:
guess = minval
if side == "upper":
while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
guess -= 1
while hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
guess += 1
else:
while hypergeom.pmf(guess, n1 + n2, n1, n) < pexact * epsilon:
guess += 1
while guess > 0 and hypergeom.pmf(guess, n1 + n2, n1, n) > pexact / epsilon:
guess -= 1
return guess
if alternative == 'less':
pvalue = hypergeom.cdf(c[0,0], n1 + n2, n1, n)
elif alternative == 'greater':
# Same formula as the 'less' case, but with the second column.
pvalue = hypergeom.cdf(c[0,1], n1 + n2, n1, c[0,1] + c[1,1])
elif alternative == 'two-sided':
mode = int(float((n + 1) * (n1 + 1)) / (n1 + n2 + 2))
pexact = hypergeom.pmf(c[0,0], n1 + n2, n1, n)
pmode = hypergeom.pmf(mode, n1 + n2, n1, n)
epsilon = 1 - 1e-4
if float(np.abs(pexact - pmode)) / np.abs(np.max(pexact, pmode)) <= 1 - epsilon:
return oddsratio, 1.
elif c[0,0] < mode:
plower = hypergeom.cdf(c[0,0], n1 + n2, n1, n)
if hypergeom.pmf(n, n1 + n2, n1, n) > pexact / epsilon:
return oddsratio, plower
guess = binary_search(n, n1, n2, "upper")
pvalue = plower + hypergeom.sf(guess - 1, n1 + n2, n1, n)
else:
pupper = hypergeom.sf(c[0,0] - 1, n1 + n2, n1, n)
if hypergeom.pmf(0, n1 + n2, n1, n) > pexact / epsilon:
return oddsratio, pupper
guess = binary_search(n, n1, n2, "lower")
pvalue = pupper + hypergeom.cdf(guess, n1 + n2, n1, n)
else:
msg = "`alternative` should be one of {'two-sided', 'less', 'greater'}"
raise ValueError(msg)
if pvalue > 1.0:
pvalue = 1.0
return oddsratio, pvalue
def spearmanr(a, b=None, axis=0):
"""
Calculates a Spearman rank-order correlation coefficient and the p-value
to test for non-correlation.
The Spearman correlation is a nonparametric measure of the monotonicity
of the relationship between two datasets. Unlike the Pearson correlation,
the Spearman correlation does not assume that both datasets are normally
distributed. Like other correlation coefficients, this one varies
between -1 and +1 with 0 implying no correlation. Correlations of -1 or
+1 imply an exact monotonic relationship. Positive correlations imply that
as x increases, so does y. Negative correlations imply that as x
increases, y decreases.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
Parameters
----------
a, b : 1D or 2D array_like, b is optional
One or two 1-D or 2-D arrays containing multiple variables and
observations. Each column of `a` and `b` represents a variable, and
each row entry a single observation of those variables. See also
`axis`. Both arrays need to have the same length in the `axis`
dimension.
axis : int or None, optional
If axis=0 (default), then each column represents a variable, with
observations in the rows. If axis=0, the relationship is transposed:
each row represents a variable, while the columns contain observations.
If axis=None, then both arrays will be raveled.
Returns
-------
rho: float or ndarray (2-D square)
Spearman correlation matrix or correlation coefficient (if only 2
variables are given as parameters. Correlation matrix is square with
length equal to total number of variables (columns or rows) in a and b
combined.
p-value : float
The two-sided p-value for a hypothesis test whose null hypothesis is
that two sets of data are uncorrelated, has same dimension as rho.
Notes
-----
Changes in scipy 0.8.0: rewrite to add tie-handling, and axis.
References
----------
[CRCProbStat2000]_ Section 14.7
.. [CRCProbStat2000] Zwillinger, D. and Kokoska, S. (2000). CRC Standard
Probability and Statistics Tables and Formulae. Chapman & Hall: New
York. 2000.
Examples
--------
>>> spearmanr([1,2,3,4,5],[5,6,7,8,7])
(0.82078268166812329, 0.088587005313543798)
>>> np.random.seed(1234321)
>>> x2n=np.random.randn(100,2)
>>> y2n=np.random.randn(100,2)
>>> spearmanr(x2n)
(0.059969996999699973, 0.55338590803773591)
>>> spearmanr(x2n[:,0], x2n[:,1])
(0.059969996999699973, 0.55338590803773591)
>>> rho, pval = spearmanr(x2n,y2n)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])
>>> pval
array([[ 0. , 0.55338591, 0.06435364, 0.53617935],
[ 0.55338591, 0. , 0.27592895, 0.80234077],
[ 0.06435364, 0.27592895, 0. , 0.73039992],
[ 0.53617935, 0.80234077, 0.73039992, 0. ]])
>>> rho, pval = spearmanr(x2n.T, y2n.T, axis=1)
>>> rho
array([[ 1. , 0.05997 , 0.18569457, 0.06258626],
[ 0.05997 , 1. , 0.110003 , 0.02534653],
[ 0.18569457, 0.110003 , 1. , 0.03488749],
[ 0.06258626, 0.02534653, 0.03488749, 1. ]])
>>> spearmanr(x2n, y2n, axis=None)
(0.10816770419260482, 0.1273562188027364)
>>> spearmanr(x2n.ravel(), y2n.ravel())
(0.10816770419260482, 0.1273562188027364)
>>> xint = np.random.randint(10,size=(100,2))
>>> spearmanr(xint)
(0.052760927029710199, 0.60213045837062351)
"""
a, axisout = _chk_asarray(a, axis)
ar = np.apply_along_axis(rankdata,axisout,a)
br = None
if not b is None:
b, axisout = _chk_asarray(b, axis)
br = np.apply_along_axis(rankdata,axisout,b)
n = a.shape[axisout]
rs = np.corrcoef(ar,br,rowvar=axisout)
olderr = np.seterr(divide='ignore') # rs can have elements equal to 1
try:
t = rs * np.sqrt((n-2) / ((rs+1.0)*(1.0-rs)))
finally:
np.seterr(**olderr)
prob = distributions.t.sf(np.abs(t),n-2)*2
if rs.shape == (2,2):
return rs[1,0], prob[1,0]
else:
return rs, prob
def pointbiserialr(x, y):
# comment: I am changing the semantics somewhat. The original function is
# fairly general and accepts an x sequence that has any type of thing in it as
# along as there are only two unique items. I am going to restrict this to
# a boolean array for my sanity.
"""Calculates a point biserial correlation coefficient and the associated
p-value.
The point biserial correlation is used to measure the relationship
between a binary variable, x, and a continuous variable, y. Like other
correlation coefficients, this one varies between -1 and +1 with 0
implying no correlation. Correlations of -1 or +1 imply a determinative
relationship.
This function uses a shortcut formula but produces the same result as
`pearsonr`.
Parameters
----------
x : array_like of bools
Input array.
y : array_like
Input array.
Returns
-------
r : float
R value
p-value : float
2-tailed p-value
References
----------
http://www.childrens-mercy.org/stats/definitions/biserial.htm
Examples
--------
>>> from scipy import stats
>>> a = np.array([0, 0, 0, 1, 1, 1, 1])
>>> b = np.arange(7)
>>> stats.pointbiserialr(a, b)
(0.8660254037844386, 0.011724811003954652)
>>> stats.pearsonr(a, b)
(0.86602540378443871, 0.011724811003954626)
>>> np.corrcoef(a, b)
array([[ 1. , 0.8660254],
[ 0.8660254, 1. ]])
"""
## Test data: http://support.sas.com/ctx/samples/index.jsp?sid=490&tab=output
# x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,1]
# y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,2.8,2.8,2.5,
# 2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,0.8,0.7,0.6,0.5,0.2,0.2,
# 0.1]
# rpb = 0.36149
x = np.asarray(x, dtype=bool)
y = np.asarray(y, dtype=float)
n = len(x)
# phat is the fraction of x values that are True
phat = x.sum() / float(len(x))
y0 = y[~x] # y-values where x is False
y1 = y[x] # y-values where x is True
y0m = y0.mean()
y1m = y1.mean()
# phat - phat**2 is more stable than phat*(1-phat)
rpb = (y1m - y0m) * np.sqrt(phat - phat**2) / y.std()
df = n-2
# fixme: see comment about TINY in pearsonr()
TINY = 1e-20
t = rpb*np.sqrt(df/((1.0-rpb+TINY)*(1.0+rpb+TINY)))
prob = betai(0.5*df, 0.5, df/(df+t*t))
return rpb, prob
def kendalltau(x, y, initial_lexsort=True):
"""
Calculates Kendall's tau, a correlation measure for ordinal data.
Kendall's tau is a measure of the correspondence between two rankings.
Values close to 1 indicate strong agreement, values close to -1 indicate
strong disagreement. This is the tau-b version of Kendall's tau which
accounts for ties.
Parameters
----------
x, y : array_like
Arrays of rankings, of the same shape. If arrays are not 1-D, they will
be flattened to 1-D.
initial_lexsort : bool, optional
Whether to use lexsort or quicksort as the sorting method for the
initial sort of the inputs. Default is lexsort (True), for which
`kendalltau` is of complexity O(n log(n)). If False, the complexity is
O(n^2), but with a smaller pre-factor (so quicksort may be faster for
small arrays).
Returns
-------
Kendall's tau : float
The tau statistic.
p-value : float
The two-sided p-value for a hypothesis test whose null hypothesis is
an absence of association, tau = 0.
Notes
-----
The definition of Kendall's tau that is used is::
tau = (P - Q) / sqrt((P + Q + T) * (P + Q + U))
where P is the number of concordant pairs, Q the number of discordant
pairs, T the number of ties only in `x`, and U the number of ties only in
`y`. If a tie occurs for the same pair in both `x` and `y`, it is not
added to either T or U.
References
----------
W.R. Knight, "A Computer Method for Calculating Kendall's Tau with
Ungrouped Data", Journal of the American Statistical Association, Vol. 61,
No. 314, Part 1, pp. 436-439, 1966.
Examples
--------
>>> x1 = [12, 2, 1, 12, 2]
>>> x2 = [1, 4, 7, 1, 0]
>>> tau, p_value = sp.stats.kendalltau(x1, x2)
>>> tau
-0.47140452079103173
>>> p_value
0.24821309157521476
"""
x = np.asarray(x).ravel()
y = np.asarray(y).ravel()
n = np.int64(len(x))
temp = range(n) # support structure used by mergesort
# this closure recursively sorts sections of perm[] by comparing
# elements of y[perm[]] using temp[] as support
# returns the number of swaps required by an equivalent bubble sort
def mergesort(offs, length):
exchcnt = 0
if length == 1:
return 0
if length == 2:
if y[perm[offs]] <= y[perm[offs+1]]:
return 0
t = perm[offs]
perm[offs] = perm[offs+1]
perm[offs+1] = t
return 1
length0 = length // 2
length1 = length - length0
middle = offs + length0
exchcnt += mergesort(offs, length0)
exchcnt += mergesort(middle, length1)
if y[perm[middle - 1]] < y[perm[middle]]:
return exchcnt
# merging
i = j = k = 0
while j < length0 or k < length1:
if k >= length1 or (j < length0 and y[perm[offs + j]] <=
y[perm[middle + k]]):
temp[i] = perm[offs + j]
d = i - j
j += 1
else:
temp[i] = perm[middle + k]
d = (offs + i) - (middle + k)
k += 1
if d > 0:
exchcnt += d;
i += 1
perm[offs:offs+length] = temp[0:length]
return exchcnt
# initial sort on values of x and, if tied, on values of y
if initial_lexsort:
# sort implemented as mergesort, worst case: O(n log(n))
perm = np.lexsort((y, x))
else:
# sort implemented as quicksort, 30% faster but with worst case: O(n^2)
perm = range(n)
perm.sort(key=lambda a: (x[a], y[a]))
# compute joint ties
first = 0
t = 0
for i in xrange(1, n):
if x[perm[first]] != x[perm[i]] or y[perm[first]] != y[perm[i]]:
t += ((i - first) * (i - first - 1)) // 2
first = i
t += ((n - first) * (n - first - 1)) // 2
# compute ties in x
first = 0
u = 0
for i in xrange(1,n):
if x[perm[first]] != x[perm[i]]:
u += ((i - first) * (i - first - 1)) // 2
first = i
u += ((n - first) * (n - first - 1)) // 2
# count exchanges
exchanges = mergesort(0, n)
# compute ties in y after mergesort with counting
first = 0
v = 0
for i in xrange(1,n):
if y[perm[first]] != y[perm[i]]:
v += ((i - first) * (i - first - 1)) // 2
first = i
v += ((n - first) * (n - first - 1)) // 2
tot = (n * (n - 1)) // 2
if tot == u and tot == v:
return 1 # Special case for all ties in both ranks
# Prevent overflow; equal to np.sqrt((tot - u) * (tot - v))
denom = np.exp(0.5 * (np.log(tot - u) + np.log(tot - v)))
tau = ((tot - (v + u - t)) - 2.0 * exchanges) / denom
# what follows reproduces the ending of Gary Strangman's original
# stats.kendalltau() in SciPy
svar = (4.0 * n + 10.0) / (9.0 * n * (n - 1))
z = tau / np.sqrt(svar)
prob = special.erfc(np.abs(z) / 1.4142136)
return tau, prob
def linregress(x, y=None):
"""
Calculate a regression line
This computes a least-squares regression for two sets of measurements.
Parameters
----------
x, y : array_like
two sets of measurements. Both arrays should have the same length.
If only x is given (and y=None), then it must be a two-dimensional
array where one dimension has length 2. The two sets of measurements
are then found by splitting the array along the length-2 dimension.
Returns
-------
slope : float
slope of the regression line
intercept : float
intercept of the regression line
r-value : float
correlation coefficient
p-value : float
two-sided p-value for a hypothesis test whose null hypothesis is
that the slope is zero.
stderr : float
Standard error of the estimate
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> x = np.random.random(10)
>>> y = np.random.random(10)
>>> slope, intercept, r_value, p_value, std_err = stats.linregress(x,y)
# To get coefficient of determination (r_squared)
>>> print "r-squared:", r_value**2
r-squared: 0.15286643777
"""
TINY = 1.0e-20
if y is None: # x is a (2, N) or (N, 2) shaped array_like
x = asarray(x)
if x.shape[0] == 2:
x, y = x
elif x.shape[1] == 2:
x, y = x.T
else:
msg = "If only `x` is given as input, it has to be of shape (2, N) \
or (N, 2), provided shape was %s" % str(x.shape)
raise ValueError(msg)
else:
x = asarray(x)
y = asarray(y)
n = len(x)
xmean = np.mean(x,None)
ymean = np.mean(y,None)
# average sum of squares:
ssxm, ssxym, ssyxm, ssym = np.cov(x, y, bias=1).flat
r_num = ssxym
r_den = np.sqrt(ssxm*ssym)
if r_den == 0.0:
r = 0.0
else:
r = r_num / r_den
if (r > 1.0): r = 1.0 # from numerical error
#z = 0.5*log((1.0+r+TINY)/(1.0-r+TINY))
df = n-2
t = r*np.sqrt(df/((1.0-r+TINY)*(1.0+r+TINY)))
prob = distributions.t.sf(np.abs(t),df)*2
slope = r_num / ssxm
intercept = ymean - slope*xmean
sterrest = np.sqrt((1-r*r)*ssym / ssxm / df)
return slope, intercept, r, prob, sterrest
#####################################
##### INFERENTIAL STATISTICS #####
#####################################
def ttest_1samp(a, popmean, axis=0):
"""Calculates the T-test for the mean of ONE group of scores `a`.
This is a two-sided test for the null hypothesis that the expected value
(mean) of a sample of independent observations is equal to the given
population mean, `popmean`.
Parameters
----------
a : array_like
sample observation
popmean : float or array_like
expected value in null hypothesis, if array_like than it must have the
same shape as `a` excluding the axis dimension
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis
over which to operate on a).
Returns
-------
t : float or array
t-statistic
prob : float or array
two-tailed p-value
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(7654567)
>>> rvs = stats.norm.rvs(loc=5,scale=10,size=(50,2))
test if mean of random sample is equal to true mean, and different mean.
We reject the null hypothesis in the second case and don't reject it in
the first case
>>> stats.ttest_1samp(rvs,5.0)
(array([-0.68014479, -0.04323899]), array([ 0.49961383, 0.96568674]))
>>> stats.ttest_1samp(rvs,0.0)
(array([ 2.77025808, 4.11038784]), array([ 0.00789095, 0.00014999]))
examples using axis and non-scalar dimension for population mean
>>> stats.ttest_1samp(rvs,[5.0,0.0])
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs.T,[5.0,0.0],axis=1)
(array([-0.68014479, 4.11038784]), array([ 4.99613833e-01, 1.49986458e-04]))
>>> stats.ttest_1samp(rvs,[[5.0],[0.0]])
(array([[-0.68014479, -0.04323899],
[ 2.77025808, 4.11038784]]), array([[ 4.99613833e-01, 9.65686743e-01],
[ 7.89094663e-03, 1.49986458e-04]]))
"""
a, axis = _chk_asarray(a, axis)
n = a.shape[axis]
df=n-1
d = np.mean(a,axis) - popmean
v = np.var(a, axis, ddof=1)
t = d / np.sqrt(v/float(n))
t = np.where((d==0)*(v==0), 1.0, t) #define t=0/0 = 1, identical mean, var
prob = distributions.t.sf(np.abs(t),df)*2 #use np.abs to get upper tail
#distributions.t.sf currently does not propagate nans
#this can be dropped, if distributions.t.sf propagates nans
#if this is removed, then prob = prob[()] needs to be removed
prob = np.where(np.isnan(t), np.nan, prob)
if t.ndim == 0:
t = t[()]
prob = prob[()]
return t,prob
def ttest_ind(a, b, axis=0):
"""Calculates the T-test for the means of TWO INDEPENDENT samples of scores.
This is a two-sided test for the null hypothesis that 2 independent samples
have identical average (expected) values.
Parameters
----------
a, b : sequence of ndarrays
The arrays must have the same shape, except in the dimension
corresponding to `axis` (the first, by default).
axis : int, optional
Axis can equal None (ravel array first), or an integer (the axis
over which to operate on a and b).
Returns
-------
t : float or array
t-statistic
prob : float or array
two-tailed p-value
Notes
-----
We can use this test, if we observe two independent samples from
the same or different population, e.g. exam scores of boys and
girls or of two ethnic groups. The test measures whether the
average (expected) value differs significantly across samples. If
we observe a large p-value, for example larger than 0.05 or 0.1,
then we cannot reject the null hypothesis of identical average scores.
If the p-value is smaller than the threshold, e.g. 1%, 5% or 10%,
then we reject the null hypothesis of equal averages.
References
----------
http://en.wikipedia.org/wiki/T-test#Independent_two-sample_t-test
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> #fix seed to get the same result
>>> np.random.seed(12345678)
test with sample with identical means
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs2)
(0.26833823296239279, 0.78849443369564765)
test with sample with different means
>>> rvs3 = stats.norm.rvs(loc=8,scale=10,size=500)
>>> stats.ttest_ind(rvs1,rvs3)
(-5.0434013458585092, 5.4302979468623391e-007)
"""
a, b, axis = _chk2_asarray(a, b, axis)
v1 = np.var(a,axis,ddof = 1)
v2 = np.var(b,axis,ddof = 1)
n1 = a.shape[axis]
n2 = b.shape[axis]
df = n1+n2-2
d = np.mean(a,axis) - np.mean(b,axis)
svar = ((n1-1)*v1+(n2-1)*v2) / float(df)
t = d/np.sqrt(svar*(1.0/n1 + 1.0/n2))
t = np.where((d==0)*(svar==0), 1.0, t) #define t=0/0 = 0, identical means
prob = distributions.t.sf(np.abs(t),df)*2#use np.abs to get upper tail
#distributions.t.sf currently does not propagate nans
#this can be dropped, if distributions.t.sf propagates nans
#if this is removed, then prob = prob[()] needs to be removed
prob = np.where(np.isnan(t), np.nan, prob)
if t.ndim == 0:
t = t[()]
prob = prob[()]
return t, prob
def ttest_rel(a,b,axis=0):
"""
Calculates the T-test on TWO RELATED samples of scores, a and b.
This is a two-sided test for the null hypothesis that 2 related or
repeated samples have identical average (expected) values.
Parameters
----------
a, b : sequence of ndarrays
The arrays must have the same shape.
axis : int, optional, (default axis=0)
Axis can equal None (ravel array first), or an integer (the axis
over which to operate on a and b).
Returns
-------
t : float or array
t-statistic
prob : float or array
two-tailed p-value
Notes
-----
Examples for the use are scores of the same set of student in
different exams, or repeated sampling from the same units. The
test measures whether the average score differs significantly
across samples (e.g. exams). If we observe a large p-value, for
example greater than 0.05 or 0.1 then we cannot reject the null
hypothesis of identical average scores. If the p-value is smaller
than the threshold, e.g. 1%, 5% or 10%, then we reject the null
hypothesis of equal averages. Small p-values are associated with
large t-statistics.
References
----------
http://en.wikipedia.org/wiki/T-test#Dependent_t-test
Examples
--------
>>> from scipy import stats
>>> np.random.seed(12345678) # fix random seed to get same numbers
>>> rvs1 = stats.norm.rvs(loc=5,scale=10,size=500)
>>> rvs2 = (stats.norm.rvs(loc=5,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs2)
(0.24101764965300962, 0.80964043445811562)
>>> rvs3 = (stats.norm.rvs(loc=8,scale=10,size=500) +
... stats.norm.rvs(scale=0.2,size=500))
>>> stats.ttest_rel(rvs1,rvs3)
(-3.9995108708727933, 7.3082402191726459e-005)
"""
a, b, axis = _chk2_asarray(a, b, axis)
if a.shape[axis] != b.shape[axis]:
raise ValueError('unequal length arrays')
n = a.shape[axis]
df = float(n-1)
d = (a-b).astype('d')
v = np.var(d,axis,ddof=1)
dm = np.mean(d, axis)
t = dm / np.sqrt(v/float(n))
t = np.where((dm==0)*(v==0), 1.0, t) #define t=0/0 = 1, zero mean and var
prob = distributions.t.sf(np.abs(t),df)*2 #use np.abs to get upper tail
#distributions.t.sf currently does not propagate nans
#this can be dropped, if distributions.t.sf propagates nans
#if this is removed, then prob = prob[()] needs to be removed
prob = np.where(np.isnan(t), np.nan, prob)
## if not np.isscalar(t):
## probs = np.reshape(probs, t.shape) # this should be redundant
## if not np.isscalar(prob) and len(prob) == 1:
## prob = prob[0]
if t.ndim == 0:
t = t[()]
prob = prob[()]
return t, prob
#import scipy.stats
#import distributions
def kstest(rvs, cdf, args=(), N=20, alternative = 'two_sided', mode='approx',**kwds):
"""
Perform the Kolmogorov-Smirnov test for goodness of fit
This performs a test of the distribution G(x) of an observed
random variable against a given distribution F(x). Under the null
hypothesis the two distributions are identical, G(x)=F(x). The
alternative hypothesis can be either 'two_sided' (default), 'less'
or 'greater'. The KS test is only valid for continuous distributions.
Parameters
----------
rvs : string or array or callable
string: name of a distribution in scipy.stats
array: 1-D observations of random variables
callable: function to generate random variables, requires keyword
argument `size`
cdf : string or callable
string: name of a distribution in scipy.stats, if rvs is a string then
cdf can evaluate to `False` or be the same as rvs
callable: function to evaluate cdf
args : tuple, sequence
distribution parameters, used if rvs or cdf are strings
N : int
sample size if rvs is string or callable
alternative : 'two_sided' (default), 'less' or 'greater'
defines the alternative hypothesis (see explanation)
mode : 'approx' (default) or 'asymp'
defines the distribution used for calculating p-value
'approx' : use approximation to exact distribution of test statistic
'asymp' : use asymptotic distribution of test statistic
Returns
-------
D : float
KS test statistic, either D, D+ or D-
p-value : float
one-tailed or two-tailed p-value
Notes
-----
In the one-sided test, the alternative is that the empirical
cumulative distribution function of the random variable is "less"
or "greater" than the cumulative distribution function F(x) of the
hypothesis, G(x)<=F(x), resp. G(x)>=F(x).
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> from scipy.stats import kstest
>>> x = np.linspace(-15,15,9)
>>> kstest(x,'norm')
(0.44435602715924361, 0.038850142705171065)
>>> np.random.seed(987654321) # set random seed to get the same result
>>> kstest('norm','',N=100)
(0.058352892479417884, 0.88531190944151261)
is equivalent to this
>>> np.random.seed(987654321)
>>> kstest(stats.norm.rvs(size=100),'norm')
(0.058352892479417884, 0.88531190944151261)
Test against one-sided alternative hypothesis:
>>> np.random.seed(987654321)
Shift distribution to larger values, so that cdf_dgp(x)< norm.cdf(x):
>>> x = stats.norm.rvs(loc=0.2, size=100)
>>> kstest(x,'norm', alternative = 'less')
(0.12464329735846891, 0.040989164077641749)
Reject equal distribution against alternative hypothesis: less
>>> kstest(x,'norm', alternative = 'greater')
(0.0072115233216311081, 0.98531158590396395)
Don't reject equal distribution against alternative hypothesis: greater
>>> kstest(x,'norm', mode='asymp')
(0.12464329735846891, 0.08944488871182088)
Testing t distributed random variables against normal distribution:
With 100 degrees of freedom the t distribution looks close to the normal
distribution, and the kstest does not reject the hypothesis that the sample
came from the normal distribution
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(100,size=100),'norm')
(0.072018929165471257, 0.67630062862479168)
With 3 degrees of freedom the t distribution looks sufficiently different
from the normal distribution, that we can reject the hypothesis that the
sample came from the normal distribution at a alpha=10% level
>>> np.random.seed(987654321)
>>> stats.kstest(stats.t.rvs(3,size=100),'norm')
(0.131016895759829, 0.058826222555312224)
"""
if isinstance(rvs, basestring):
#cdf = getattr(stats, rvs).cdf
if (not cdf) or (cdf == rvs):
cdf = getattr(distributions, rvs).cdf
rvs = getattr(distributions, rvs).rvs
else:
raise AttributeError('if rvs is string, cdf has to be the same distribution')
if isinstance(cdf, basestring):
cdf = getattr(distributions, cdf).cdf
if callable(rvs):
kwds = {'size':N}
vals = np.sort(rvs(*args,**kwds))
else:
vals = np.sort(rvs)
N = len(vals)
cdfvals = cdf(vals, *args)
if alternative in ['two_sided', 'greater']:
Dplus = (np.arange(1.0, N+1)/N - cdfvals).max()
if alternative == 'greater':
return Dplus, distributions.ksone.sf(Dplus,N)
if alternative in ['two_sided', 'less']:
Dmin = (cdfvals - np.arange(0.0, N)/N).max()
if alternative == 'less':
return Dmin, distributions.ksone.sf(Dmin,N)
if alternative == 'two_sided':
D = np.max([Dplus,Dmin])
if mode == 'asymp':
return D, distributions.kstwobign.sf(D*np.sqrt(N))
if mode == 'approx':
pval_two = distributions.kstwobign.sf(D*np.sqrt(N))
if N > 2666 or pval_two > 0.80 - N*0.3/1000.0 :
return D, distributions.kstwobign.sf(D*np.sqrt(N))
else:
return D, distributions.ksone.sf(D,N)*2
def chisquare(f_obs, f_exp=None, ddof=0):
"""
Calculates a one-way chi square test.
The chi square test tests the null hypothesis that the categorical data
has the given frequencies.
Parameters
----------
f_obs : array
observed frequencies in each category
f_exp : array, optional
expected frequencies in each category. By default the categories are
assumed to be equally likely.
ddof : int, optional
adjustment to the degrees of freedom for the p-value
Returns
-------
chisquare statistic : float
The chisquare test statistic
p : float
The p-value of the test.
Notes
-----
This test is invalid when the observed or expected frequencies in each
category are too small. A typical rule is that all of the observed
and expected frequencies should be at least 5.
The default degrees of freedom, k-1, are for the case when no parameters
of the distribution are estimated. If p parameters are estimated by
efficient maximum likelihood then the correct degrees of freedom are
k-1-p. If the parameters are estimated in a different way, then then
the dof can be between k-1-p and k-1. However, it is also possible that
the asymptotic distributions is not a chisquare, in which case this
test is not appropriate.
References
----------
.. [1] Lowry, Richard. "Concepts and Applications of Inferential
Statistics". Chapter 8. http://faculty.vassar.edu/lowry/ch8pt1.html
"""
f_obs = asarray(f_obs)
k = len(f_obs)
if f_exp is None:
f_exp = array([np.sum(f_obs,axis=0)/float(k)] * len(f_obs),float)
f_exp = f_exp.astype(float)
chisq = np.add.reduce((f_obs-f_exp)**2 / f_exp)
return chisq, chisqprob(chisq, k-1-ddof)
def ks_2samp(data1, data2):
"""
Computes the Kolmogorov-Smirnof statistic on 2 samples.
This is a two-sided test for the null hypothesis that 2 independent samples
are drawn from the same continuous distribution.
Parameters
----------
a, b : sequence of 1-D ndarrays
two arrays of sample observations assumed to be drawn from a continuous
distribution, sample sizes can be different
Returns
-------
D : float
KS statistic
p-value : float
two-tailed p-value
Notes
-----
This tests whether 2 samples are drawn from the same distribution. Note
that, like in the case of the one-sample K-S test, the distribution is
assumed to be continuous.
This is the two-sided test, one-sided tests are not implemented.
The test uses the two-sided asymptotic Kolmogorov-Smirnov distribution.
If the K-S statistic is small or the p-value is high, then we cannot
reject the hypothesis that the distributions of the two samples
are the same.
Examples
--------
>>> from scipy import stats
>>> import numpy as np
>>> from scipy.stats import ks_2samp
>>> #fix random seed to get the same result
>>> np.random.seed(12345678);
>>> n1 = 200 # size of first sample
>>> n2 = 300 # size of second sample
different distribution
we can reject the null hypothesis since the pvalue is below 1%
>>> rvs1 = stats.norm.rvs(size=n1,loc=0.,scale=1);
>>> rvs2 = stats.norm.rvs(size=n2,loc=0.5,scale=1.5)
>>> ks_2samp(rvs1,rvs2)
(0.20833333333333337, 4.6674975515806989e-005)
slightly different distribution
we cannot reject the null hypothesis at a 10% or lower alpha since
the pvalue at 0.144 is higher than 10%
>>> rvs3 = stats.norm.rvs(size=n2,loc=0.01,scale=1.0)
>>> ks_2samp(rvs1,rvs3)
(0.10333333333333333, 0.14498781825751686)
identical distribution
we cannot reject the null hypothesis since the pvalue is high, 41%
>>> rvs4 = stats.norm.rvs(size=n2,loc=0.0,scale=1.0)
>>> ks_2samp(rvs1,rvs4)
(0.07999999999999996, 0.41126949729859719)
"""
data1, data2 = map(asarray, (data1, data2))
n1 = data1.shape[0]
n2 = data2.shape[0]
n1 = len(data1)
n2 = len(data2)
data1 = np.sort(data1)
data2 = np.sort(data2)
data_all = np.concatenate([data1,data2])
cdf1 = np.searchsorted(data1,data_all,side='right')/(1.0*n1)
cdf2 = (np.searchsorted(data2,data_all,side='right'))/(1.0*n2)
d = np.max(np.absolute(cdf1-cdf2))
#Note: d absolute not signed distance
en = np.sqrt(n1*n2/float(n1+n2))
try:
prob = ksprob((en+0.12+0.11/en)*d)
except:
prob = 1.0
return d, prob
def mannwhitneyu(x, y, use_continuity=True):
"""
Computes the Mann-Whitney rank test on samples x and y.
Parameters
----------
x, y : array_like
Array of samples, should be one-dimensional.
use_continuity : bool, optional
Whether a continuity correction (1/2.) should be taken into
account. Default is True.
Returns
-------
u : float
The Mann-Whitney statistics.
prob : float
One-sided p-value assuming a asymptotic normal distribution.
Notes
-----
Use only when the number of observation in each sample is > 20 and
you have 2 independent samples of ranks. Mann-Whitney U is
significant if the u-obtained is LESS THAN or equal to the critical
value of U.
This test corrects for ties and by default uses a continuity correction.
The reported p-value is for a one-sided hypothesis, to get the two-sided
p-value multiply the returned p-value by 2.
"""
x = asarray(x)
y = asarray(y)
n1 = len(x)
n2 = len(y)
ranked = rankdata(np.concatenate((x,y)))
rankx = ranked[0:n1] # get the x-ranks
#ranky = ranked[n1:] # the rest are y-ranks
u1 = n1*n2 + (n1*(n1+1))/2.0 - np.sum(rankx,axis=0) # calc U for x
u2 = n1*n2 - u1 # remainder is U for y
bigu = max(u1,u2)
smallu = min(u1,u2)
#T = np.sqrt(tiecorrect(ranked)) # correction factor for tied scores
T = tiecorrect(ranked)
if T == 0:
raise ValueError('All numbers are identical in amannwhitneyu')
sd = np.sqrt(T*n1*n2*(n1+n2+1)/12.0)
if use_continuity:
# normal approximation for prob calc with continuity correction
z = abs((bigu-0.5-n1*n2/2.0) / sd)
else:
z = abs((bigu-n1*n2/2.0) / sd) # normal approximation for prob calc
return smallu, distributions.norm.sf(z) #(1.0 - zprob(z))
def tiecorrect(rankvals):
"""Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests.
See Siegel, S. (1956) Nonparametric Statistics for the Behavioral
Sciences. New York: McGraw-Hill. Code adapted from |Stat rankind.c
code.
Returns
-------
T correction factor for U or H
"""
sorted,posn = fastsort(asarray(rankvals))
n = len(sorted)
T = 0.0
i = 0
while (i<n-1):
if sorted[i] == sorted[i+1]:
nties = 1
while (i<n-1) and (sorted[i] == sorted[i+1]):
nties = nties +1
i = i +1
T = T + nties**3 - nties
i = i+1
T = T / float(n**3-n)
return 1.0 - T
def ranksums(x, y):
"""
Compute the Wilcoxon rank-sum statistic for two samples.
The Wilcoxon rank-sum test tests the null hypothesis that two sets
of measurements are drawn from the same distribution. The alternative
hypothesis is that values in one sample are more likely to be
larger than the values in the other sample.
This test should be used to compare two samples from continuous
distributions. It does not handle ties between measurements
in x and y. For tie-handling and an optional continuity correction
see `stats.mannwhitneyu`_
Parameters
----------
x,y : array_like
The data from the two samples
Returns
-------
z-statistic : float
The test statistic under the large-sample approximation that the
rank sum statistic is normally distributed
p-value : float
The two-sided p-value of the test
References
----------
.. [1] http://en.wikipedia.org/wiki/Wilcoxon_rank-sum_test
"""
x,y = map(np.asarray, (x, y))
n1 = len(x)
n2 = len(y)
alldata = np.concatenate((x,y))
ranked = rankdata(alldata)
x = ranked[:n1]
y = ranked[n1:]
s = np.sum(x,axis=0)
expected = n1*(n1+n2+1) / 2.0
z = (s - expected) / np.sqrt(n1*n2*(n1+n2+1)/12.0)
prob = 2 * distributions.norm.sf(abs(z))
return z, prob
def kruskal(*args):
"""
Compute the Kruskal-Wallis H-test for independent samples
The Kruskal-Wallis H-test tests the null hypothesis that the population
median of all of the groups are equal. It is a non-parametric version of
ANOVA. The test works on 2 or more independent samples, which may have
different sizes. Note that rejecting the null hypothesis does not
indicate which of the groups differs. Post-hoc comparisons between
groups are required to determine which groups are different.
Parameters
----------
sample1, sample2, ... : array_like
Two or more arrays with the sample measurements can be given as
arguments.
Returns
-------
H-statistic : float
The Kruskal-Wallis H statistic, corrected for ties
p-value : float
The p-value for the test using the assumption that H has a chi
square distribution
Notes
-----
Due to the assumption that H has a chi square distribution, the number
of samples in each group must not be too small. A typical rule is
that each sample must have at least 5 measurements.
References
----------
.. [1] http://en.wikipedia.org/wiki/Kruskal-Wallis_one-way_analysis_of_variance
"""
if len(args) < 2:
raise ValueError("Need at least two groups in stats.kruskal()")
n = map(len,args)
all = []
for i in range(len(args)):
all.extend(args[i].tolist())
ranked = list(rankdata(all))
T = tiecorrect(ranked)
args = list(args)
for i in range(len(args)):
args[i] = ranked[0:n[i]]
del ranked[0:n[i]]
rsums = []
for i in range(len(args)):
rsums.append(np.sum(args[i],axis=0)**2)
rsums[i] = rsums[i] / float(n[i])
ssbn = np.sum(rsums,axis=0)
totaln = np.sum(n,axis=0)
h = 12.0 / (totaln*(totaln+1)) * ssbn - 3*(totaln+1)
df = len(args) - 1
if T == 0:
raise ValueError('All numbers are identical in kruskal')
h = h / float(T)
return h, chisqprob(h,df)
def friedmanchisquare(*args):
"""
Computes the Friedman test for repeated measurements
The Friedman test tests the null hypothesis that repeated measurements of
the same individuals have the same distribution. It is often used
to test for consistency among measurements obtained in different ways.
For example, if two measurement techniques are used on the same set of
individuals, the Friedman test can be used to determine if the two
measurement techniques are consistent.
Parameters
----------
measurements1, measurements2, measurements3... : array_like
Arrays of measurements. All of the arrays must have the same number
of elements. At least 3 sets of measurements must be given.
Returns
-------
friedman chi-square statistic : float
the test statistic, correcting for ties
p-value : float
the associated p-value assuming that the test statistic has a chi
squared distribution
Notes
-----
Due to the assumption that the test statistic has a chi squared
distribution, the p-value is only reliable for n > 10 and more than
6 repeated measurements.
References
----------
.. [1] http://en.wikipedia.org/wiki/Friedman_test
"""
k = len(args)
if k < 3:
raise ValueError('\nLess than 3 levels. Friedman test not appropriate.\n')
n = len(args[0])
for i in range(1,k):
if len(args[i]) <> n:
raise ValueError('Unequal N in friedmanchisquare. Aborting.')
# Rank data
data = apply(_support.abut,args)
data = data.astype(float)
for i in range(len(data)):
data[i] = rankdata(data[i])
# Handle ties
ties = 0
for i in range(len(data)):
replist, repnum = find_repeats(array(data[i]))
for t in repnum:
ties += t*(t*t-1)
c = 1 - ties / float(k*(k*k-1)*n)
ssbn = pysum(pysum(data)**2)
chisq = ( 12.0 / (k*n*(k+1)) * ssbn - 3*n*(k+1) ) / c
return chisq, chisqprob(chisq,k-1)
#####################################
#### PROBABILITY CALCULATIONS ####
#####################################
zprob = special.ndtr
def chisqprob(chisq, df):
"""
Probability value (1-tail) for the Chi^2 probability distribution.
Broadcasting rules apply.
Parameters
----------
chisq : array_like or float > 0
df : array_like or float, probably int >= 1
Returns
-------
chisqprob : ndarray
The area from `chisq` to infinity under the Chi^2 probability
distribution with degrees of freedom `df`.
"""
return special.chdtrc(df,chisq)
ksprob = special.kolmogorov
fprob = special.fdtrc
def betai(a, b, x):
"""
Returns the incomplete beta function.
I_x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)
where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
function of a.
The standard broadcasting rules apply to a, b, and x.
Parameters
----------
a : array_like or float > 0
b : array_like or float > 0
x : array_like or float
x will be clipped to be no greater than 1.0 .
Returns
-------
betai : ndarray
Incomplete beta function.
"""
x = np.asarray(x)
x = np.where(x < 1.0, x, 1.0) # if x > 1 then return 1.0
return special.betainc(a, b, x)
#####################################
####### ANOVA CALCULATIONS #######
#####################################
def glm(data, para):
"""Calculates a linear model fit ...
anova/ancova/lin-regress/t-test/etc. Taken from:
Peterson et al. Statistical limitations in functional neuroimaging
I. Non-inferential methods and statistical models. Phil Trans Royal Soc
Lond B 354: 1239-1260.
Returns
-------
statistic, p-value ???
"""
if len(para) != len(data):
raise ValueError("data and para must be same length in aglm")
n = len(para)
p = _support.unique(para)
x = zeros((n,len(p))) # design matrix
for l in range(len(p)):
x[:,l] = para == p[l]
# fixme: normal equations are bad. Use linalg.lstsq instead.
b = dot(dot(linalg.inv(dot(np.transpose(x),x)), # i.e., b=inv(X'X)X'Y
np.transpose(x)),data)
diffs = (data - dot(x,b))
s_sq = 1./(n-len(p)) * dot(np.transpose(diffs), diffs)
if len(p) == 2: # ttest_ind
c = array([1,-1])
df = n-2
fact = np.sum(1.0/np.sum(x,0),axis=0) # i.e., 1/n1 + 1/n2 + 1/n3 ...
t = dot(c,b) / np.sqrt(s_sq*fact)
probs = betai(0.5*df,0.5,float(df)/(df+t*t))
return t, probs
else:
raise ValueError("only ttest_ind implemented")
def f_value_wilks_lambda(ER, EF, dfnum, dfden, a, b):
"""Calculation of Wilks lambda F-statistic for multivarite data, per
Maxwell & Delaney p.657.
"""
if isinstance(ER, (int, float)):
ER = array([[ER]])
if isinstance(EF, (int, float)):
EF = array([[EF]])
lmbda = linalg.det(EF) / linalg.det(ER)
if (a-1)**2 + (b-1)**2 == 5:
q = 1
else:
q = np.sqrt( ((a-1)**2*(b-1)**2 - 2) / ((a-1)**2 + (b-1)**2 -5) )
n_um = (1 - lmbda**(1.0/q))*(a-1)*(b-1)
d_en = lmbda**(1.0/q) / (n_um*q - 0.5*(a-1)*(b-1) + 1)
return n_um / d_en
def f_value(ER, EF, dfR, dfF):
"""
Returns an F-statistic for a restricted vs. unrestricted model.
Parameters
----------
ER : float
`ER` is the sum of squared residuals for the restricted model
or null hypothesis
EF : float
`EF` is the sum of squared residuals for the unrestricted model
or alternate hypothesis
dfR : int
`dfR` is the degrees of freedom in the restricted model
dfF : int
`dfF` is the degrees of freedom in the unrestricted model
Returns
-------
F-statistic : float
"""
return ((ER-EF)/float(dfR-dfF) / (EF/float(dfF)))
def f_value_multivariate(ER, EF, dfnum, dfden):
"""
Returns a multivariate F-statistic.
Parameters
----------
ER : ndarray
Error associated with the null hypothesis (the Restricted model).
From a multivariate F calculation.
EF : ndarray
Error associated with the alternate hypothesis (the Full model)
From a multivariate F calculation.
dfnum : int
Degrees of freedom the Restricted model.
dfden : int
Degrees of freedom associated with the Restricted model.
Returns
-------
fstat : float
The computed F-statistic.
"""
if isinstance(ER, (int, float)):
ER = array([[ER]])
if isinstance(EF, (int, float)):
EF = array([[EF]])
n_um = (linalg.det(ER) - linalg.det(EF)) / float(dfnum)
d_en = linalg.det(EF) / float(dfden)
return n_um / d_en
#####################################
####### SUPPORT FUNCTIONS ########
#####################################
def ss(a, axis=0):
"""
Squares each element of the input array, and returns the square(s) of that.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
The axis along which to calculate. If None, use whole array.
Default is 0, i.e. along the first axis.
Returns
-------
ss : ndarray
The sum along the given axis for (a**2).
See also
--------
square_of_sums : The square(s) of the sum(s) (the opposite of `ss`).
Examples
--------
>>> from scipy import stats
>>> a = np.array([1., 2., 5.])
>>> stats.ss(a)
30.0
And calculating along an axis:
>>> b = np.array([[1., 2., 5.], [2., 5., 6.]])
>>> stats.ss(b, axis=1)
array([ 30., 65.])
"""
a, axis = _chk_asarray(a, axis)
return np.sum(a*a, axis)
def square_of_sums(a, axis=0):
"""
Sums elements of the input array, and returns the square(s) of that sum.
Parameters
----------
a : array_like
Input array.
axis : int or None, optional
If axis is None, ravel `a` first. If `axis` is an integer, this will
be the axis over which to operate. Defaults to 0.
Returns
-------
ss : float or ndarray
The square of the sum over `axis`.
See also
--------
ss : The sum of squares (the opposite of `square_of_sums`).
Examples
--------
>>> from scipy import stats
>>> a = np.arange(20).reshape(5,4)
>>> stats.square_of_sums(a)
array([ 1600., 2025., 2500., 3025.])
>>> stats.square_of_sums(a, axis=None)
36100.0
"""
a, axis = _chk_asarray(a, axis)
s = np.sum(a,axis)
if not np.isscalar(s):
return s.astype(float)*s
else:
return float(s)*s
def fastsort(a):
"""
Sort an array and provide the argsort.
Parameters
----------
a : array_like
Input array.
Returns
-------
fastsort : ndarray of type int
sorted indices into the original array
"""
# TODO: the wording in the docstring is nonsense.
it = np.argsort(a)
as_ = a[it]
return as_, it
def rankdata(a):
"""
Ranks the data, dealing with ties appropriately.
Equal values are assigned a rank that is the average of the ranks that
would have been otherwise assigned to all of the values within that set.
Ranks begin at 1, not 0.
Parameters
----------
a : array_like
This array is first flattened.
Returns
-------
rankdata : ndarray
An array of length equal to the size of `a`, containing rank scores.
Examples
--------
>>> stats.rankdata([0, 2, 2, 3])
array([ 1. , 2.5, 2.5, 4. ])
"""
a = np.ravel(a)
n = len(a)
svec, ivec = fastsort(a)
sumranks = 0
dupcount = 0
newarray = np.zeros(n, float)
for i in xrange(n):
sumranks += i
dupcount += 1
if i==n-1 or svec[i] != svec[i+1]:
averank = sumranks / float(dupcount) + 1
for j in xrange(i-dupcount+1,i+1):
newarray[ivec[j]] = averank
sumranks = 0
dupcount = 0
return newarray
|