File: test_morestats.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (305 lines) | stat: -rw-r--r-- 10,974 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Author:  Travis Oliphant, 2002
#
# Further enhancements and tests added by numerous SciPy developers.
#

import warnings

from numpy.testing import TestCase, run_module_suite, assert_array_equal, \
    assert_almost_equal, assert_array_less, assert_array_almost_equal, \
    assert_raises, assert_

import scipy.stats as stats

import numpy as np
from numpy.random import RandomState


g1 = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000]
g2 = [0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988]
g3 = [0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996]
g4 = [1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996]
g5 = [0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996]
g6 = [1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996]
g7 = [0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002]
g8 = [0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006]
g9 = [1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991]
g10= [0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997]


class TestShapiro(TestCase):
    def test_basic(self):
        x1 = [0.11,7.87,4.61,10.14,7.95,3.14,0.46,
              4.43,0.21,4.75,0.71,1.52,3.24,
              0.93,0.42,4.97,9.53,4.55,0.47,6.66]
        w,pw = stats.shapiro(x1)
        assert_almost_equal(w,0.90047299861907959,6)
        assert_almost_equal(pw,0.042089745402336121,6)
        x2 = [1.36,1.14,2.92,2.55,1.46,1.06,5.27,-1.11,
              3.48,1.10,0.88,-0.51,1.46,0.52,6.20,1.69,
              0.08,3.67,2.81,3.49]
        w,pw = stats.shapiro(x2)
        assert_almost_equal(w,0.9590270,6)
        assert_almost_equal(pw,0.52460,3)

    def test_bad_arg(self):
        # Length of x is less than 3.
        x = [1]
        assert_raises(ValueError, stats.shapiro, x)


class TestAnderson(TestCase):
    def test_normal(self):
        rs = RandomState(1234567890)
        x1 = rs.standard_exponential(size=50)
        x2 = rs.standard_normal(size=50)
        A,crit,sig = stats.anderson(x1)
        assert_array_less(crit[:-1], A)
        A,crit,sig = stats.anderson(x2)
        assert_array_less(A, crit[-2:])

    def test_expon(self):
        rs = RandomState(1234567890)
        x1 = rs.standard_exponential(size=50)
        x2 = rs.standard_normal(size=50)
        A,crit,sig = stats.anderson(x1,'expon')
        assert_array_less(A, crit[-2:])
        olderr = np.seterr(all='ignore')
        try:
            A,crit,sig = stats.anderson(x2,'expon')
        finally:
            np.seterr(**olderr)
        assert_(A > crit[-1])

    def test_bad_arg(self):
        assert_raises(ValueError, stats.anderson, [1], dist='plate_of_shrimp')


class TestAnsari(TestCase):

    def test_small(self):
        x = [1,2,3,3,4]
        y = [3,2,6,1,6,1,4,1]
        W, pval = stats.ansari(x,y)
        assert_almost_equal(W,23.5,11)
        assert_almost_equal(pval,0.13499256881897437,11)

    def test_approx(self):
        ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
                           101, 96, 97, 102, 107, 113, 116, 113, 110, 98))
        parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104,
                           100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99))
        W, pval = stats.ansari(ramsay, parekh)
        assert_almost_equal(W,185.5,11)
        assert_almost_equal(pval,0.18145819972867083,11)

    def test_exact(self):
        W,pval = stats.ansari([1,2,3,4],[15,5,20,8,10,12])
        assert_almost_equal(W,10.0,11)
        assert_almost_equal(pval,0.533333333333333333,7)

    def test_bad_arg(self):
        assert_raises(ValueError, stats.ansari, [], [1])
        assert_raises(ValueError, stats.ansari, [1], [])

warnings.filterwarnings('ignore',
                        message="Ties preclude use of exact statistic.")


class TestBartlett(TestCase):

    def test_data(self):
        args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
        T, pval = stats.bartlett(*args)
        assert_almost_equal(T,20.78587342806484,7)
        assert_almost_equal(pval,0.0136358632781,7)

    def test_bad_arg(self):
        """Too few args raises ValueError."""
        assert_raises(ValueError, stats.bartlett, [1])


class TestLevene(TestCase):

    def test_data(self):
        args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
        W, pval = stats.levene(*args)
        assert_almost_equal(W,1.7059176930008939,7)
        assert_almost_equal(pval,0.0990829755522,7)

    def test_trimmed1(self):
        """Test that center='trimmed' gives the same result as center='mean' when proportiontocut=0."""
        W1, pval1 = stats.levene(g1, g2, g3, center='mean')
        W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0)
        assert_almost_equal(W1, W2)
        assert_almost_equal(pval1, pval2)

    def test_trimmed2(self):
        x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
        y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
        # Use center='trimmed'
        W1, pval1 = stats.levene(x, y, center='trimmed', proportiontocut=0.125)
        # Trim the data here, and use center='mean'
        W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean')
        # Result should be the same.
        assert_almost_equal(W1, W2)
        assert_almost_equal(pval1, pval2)

    def test_equal_mean_median(self):
        x = np.linspace(-1,1,21)
        y = x**3
        W1, pval1 = stats.levene(x, y, center='mean')
        W2, pval2 = stats.levene(x, y, center='median')
        assert_almost_equal(W1, W2)
        assert_almost_equal(pval1, pval2)

    def test_bad_keyword(self):
        x = np.linspace(-1,1,21)
        assert_raises(TypeError, stats.levene, x, x, portiontocut=0.1)

    def test_bad_center_value(self):
        x = np.linspace(-1,1,21)
        assert_raises(ValueError, stats.levene, x, x, center='trim')

    def test_too_few_args(self):
        assert_raises(ValueError, stats.levene, [1])


class TestBinomP(TestCase):

    def test_data(self):
        pval = stats.binom_test(100,250)
        assert_almost_equal(pval,0.0018833009350757682,11)
        pval = stats.binom_test(201,405)
        assert_almost_equal(pval,0.92085205962670713,11)
        pval = stats.binom_test([682,243],p=3.0/4)
        assert_almost_equal(pval,0.38249155957481695,11)

    def test_bad_len_x(self):
        """Length of x must be 1 or 2."""
        assert_raises(ValueError, stats.binom_test, [1,2,3])

    def test_bad_n(self):
        """len(x) is 1, but n is invalid."""
        # Missing n
        assert_raises(ValueError, stats.binom_test, [100])
        # n less than x[0]
        assert_raises(ValueError, stats.binom_test, [100], n=50)

    def test_bad_p(self):
        assert_raises(ValueError, stats.binom_test, [50, 50], p=2.0)


class TestFindRepeats(TestCase):
    def test_basic(self):
        a = [1,2,3,4,1,2,3,4,1,2,5]
        res,nums = stats.find_repeats(a)
        assert_array_equal(res,[1,2,3,4])
        assert_array_equal(nums,[3,3,2,2])


class TestFligner(TestCase):

    def test_data(self):
        # numbers from R: fligner.test in package stats
        x1 = np.arange(5)
        assert_array_almost_equal(stats.fligner(x1,x1**2),
                           (3.2282229927203536, 0.072379187848207877), 11)

    def test_trimmed1(self):
        """Test that center='trimmed' gives the same result as center='mean' when proportiontocut=0."""
        Xsq1, pval1 = stats.fligner(g1, g2, g3, center='mean')
        Xsq2, pval2 = stats.fligner(g1, g2, g3, center='trimmed', proportiontocut=0.0)
        assert_almost_equal(Xsq1, Xsq2)
        assert_almost_equal(pval1, pval2)

    def test_trimmed2(self):
        x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
        y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
        # Use center='trimmed'
        Xsq1, pval1 = stats.fligner(x, y, center='trimmed', proportiontocut=0.125)
        # Trim the data here, and use center='mean'
        Xsq2, pval2 = stats.fligner(x[1:-1], y[1:-1], center='mean')
        # Result should be the same.
        assert_almost_equal(Xsq1, Xsq2)
        assert_almost_equal(pval1, pval2)

    # The following test looks reasonable at first, but fligner() uses the
    # function stats.rankdata(), and in one of the cases in this test,
    # there are ties, while in the other (because of normal rounding
    # errors) there are not.  This difference leads to differences in the
    # third significant digit of W.
    #
    #def test_equal_mean_median(self):
    #    x = np.linspace(-1,1,21)
    #    y = x**3
    #    W1, pval1 = stats.fligner(x, y, center='mean')
    #    W2, pval2 = stats.fligner(x, y, center='median')
    #    assert_almost_equal(W1, W2)
    #    assert_almost_equal(pval1, pval2)

    def test_bad_keyword(self):
        x = np.linspace(-1,1,21)
        assert_raises(TypeError, stats.fligner, x, x, portiontocut=0.1)

    def test_bad_center_value(self):
        x = np.linspace(-1,1,21)
        assert_raises(ValueError, stats.fligner, x, x, center='trim')

    def test_bad_num_args(self):
        """Too few args raises ValueError."""
        assert_raises(ValueError, stats.fligner, [1])


def test_mood():
    # numbers from R: mood.test in package stats
    x1 = np.arange(5)
    assert_array_almost_equal(stats.mood(x1,x1**2),
            (-1.3830857299399906, 0.16663858066771478), 11)

def test_mood_bad_arg():
    """Raise ValueError when the sum of the lengths of the args is less than 3."""
    assert_raises(ValueError, stats.mood, [1], [])

def test_oneway_bad_arg():
    """Raise ValueError is fewer than two args are given."""
    assert_raises(ValueError, stats.oneway, [1])

def test_wilcoxon_bad_arg():
    """Raise ValueError when two args of different lengths are given."""
    assert_raises(ValueError, stats.wilcoxon, [1], [1,2])

def test_mvsdist_bad_arg():
    """Raise ValueError if fewer than two data points are given."""
    data = [1]
    assert_raises(ValueError, stats.mvsdist, data)

def test_kstat_bad_arg():
    """Raise ValueError if n > 4 or n > 1."""
    data = [1]
    n = 10
    assert_raises(ValueError, stats.kstat, data, n=n)

def test_kstatvar_bad_arg():
    """Raise ValueError is n is not 1 or 2."""
    data = [1]
    n = 10
    assert_raises(ValueError, stats.kstatvar, data, n=n)

def test_probplot_bad_arg():
    """Raise ValueError when given an invalid distribution."""
    data = [1]
    assert_raises(ValueError, stats.probplot, data, dist="plate_of_shrimp")

def test_ppcc_max_bad_arg():
    """Raise ValueError when given an invalid distribution."""
    data = [1]
    assert_raises(ValueError, stats.ppcc_max, data, dist="plate_of_shrimp")

def test_boxcox_bad_arg():
    """Raise ValueError if any data value is negative."""
    x = np.array([-1])
    assert_raises(ValueError, stats.boxcox, x)

if __name__ == "__main__":
    run_module_suite()