1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
|
# Author: Travis Oliphant, 2002
#
# Further enhancements and tests added by numerous SciPy developers.
#
import warnings
from numpy.testing import TestCase, run_module_suite, assert_array_equal, \
assert_almost_equal, assert_array_less, assert_array_almost_equal, \
assert_raises, assert_
import scipy.stats as stats
import numpy as np
from numpy.random import RandomState
g1 = [1.006, 0.996, 0.998, 1.000, 0.992, 0.993, 1.002, 0.999, 0.994, 1.000]
g2 = [0.998, 1.006, 1.000, 1.002, 0.997, 0.998, 0.996, 1.000, 1.006, 0.988]
g3 = [0.991, 0.987, 0.997, 0.999, 0.995, 0.994, 1.000, 0.999, 0.996, 0.996]
g4 = [1.005, 1.002, 0.994, 1.000, 0.995, 0.994, 0.998, 0.996, 1.002, 0.996]
g5 = [0.998, 0.998, 0.982, 0.990, 1.002, 0.984, 0.996, 0.993, 0.980, 0.996]
g6 = [1.009, 1.013, 1.009, 0.997, 0.988, 1.002, 0.995, 0.998, 0.981, 0.996]
g7 = [0.990, 1.004, 0.996, 1.001, 0.998, 1.000, 1.018, 1.010, 0.996, 1.002]
g8 = [0.998, 1.000, 1.006, 1.000, 1.002, 0.996, 0.998, 0.996, 1.002, 1.006]
g9 = [1.002, 0.998, 0.996, 0.995, 0.996, 1.004, 1.004, 0.998, 0.999, 0.991]
g10= [0.991, 0.995, 0.984, 0.994, 0.997, 0.997, 0.991, 0.998, 1.004, 0.997]
class TestShapiro(TestCase):
def test_basic(self):
x1 = [0.11,7.87,4.61,10.14,7.95,3.14,0.46,
4.43,0.21,4.75,0.71,1.52,3.24,
0.93,0.42,4.97,9.53,4.55,0.47,6.66]
w,pw = stats.shapiro(x1)
assert_almost_equal(w,0.90047299861907959,6)
assert_almost_equal(pw,0.042089745402336121,6)
x2 = [1.36,1.14,2.92,2.55,1.46,1.06,5.27,-1.11,
3.48,1.10,0.88,-0.51,1.46,0.52,6.20,1.69,
0.08,3.67,2.81,3.49]
w,pw = stats.shapiro(x2)
assert_almost_equal(w,0.9590270,6)
assert_almost_equal(pw,0.52460,3)
def test_bad_arg(self):
# Length of x is less than 3.
x = [1]
assert_raises(ValueError, stats.shapiro, x)
class TestAnderson(TestCase):
def test_normal(self):
rs = RandomState(1234567890)
x1 = rs.standard_exponential(size=50)
x2 = rs.standard_normal(size=50)
A,crit,sig = stats.anderson(x1)
assert_array_less(crit[:-1], A)
A,crit,sig = stats.anderson(x2)
assert_array_less(A, crit[-2:])
def test_expon(self):
rs = RandomState(1234567890)
x1 = rs.standard_exponential(size=50)
x2 = rs.standard_normal(size=50)
A,crit,sig = stats.anderson(x1,'expon')
assert_array_less(A, crit[-2:])
olderr = np.seterr(all='ignore')
try:
A,crit,sig = stats.anderson(x2,'expon')
finally:
np.seterr(**olderr)
assert_(A > crit[-1])
def test_bad_arg(self):
assert_raises(ValueError, stats.anderson, [1], dist='plate_of_shrimp')
class TestAnsari(TestCase):
def test_small(self):
x = [1,2,3,3,4]
y = [3,2,6,1,6,1,4,1]
W, pval = stats.ansari(x,y)
assert_almost_equal(W,23.5,11)
assert_almost_equal(pval,0.13499256881897437,11)
def test_approx(self):
ramsay = np.array((111, 107, 100, 99, 102, 106, 109, 108, 104, 99,
101, 96, 97, 102, 107, 113, 116, 113, 110, 98))
parekh = np.array((107, 108, 106, 98, 105, 103, 110, 105, 104,
100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99))
W, pval = stats.ansari(ramsay, parekh)
assert_almost_equal(W,185.5,11)
assert_almost_equal(pval,0.18145819972867083,11)
def test_exact(self):
W,pval = stats.ansari([1,2,3,4],[15,5,20,8,10,12])
assert_almost_equal(W,10.0,11)
assert_almost_equal(pval,0.533333333333333333,7)
def test_bad_arg(self):
assert_raises(ValueError, stats.ansari, [], [1])
assert_raises(ValueError, stats.ansari, [1], [])
warnings.filterwarnings('ignore',
message="Ties preclude use of exact statistic.")
class TestBartlett(TestCase):
def test_data(self):
args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
T, pval = stats.bartlett(*args)
assert_almost_equal(T,20.78587342806484,7)
assert_almost_equal(pval,0.0136358632781,7)
def test_bad_arg(self):
"""Too few args raises ValueError."""
assert_raises(ValueError, stats.bartlett, [1])
class TestLevene(TestCase):
def test_data(self):
args = [g1, g2, g3, g4, g5, g6, g7, g8, g9, g10]
W, pval = stats.levene(*args)
assert_almost_equal(W,1.7059176930008939,7)
assert_almost_equal(pval,0.0990829755522,7)
def test_trimmed1(self):
"""Test that center='trimmed' gives the same result as center='mean' when proportiontocut=0."""
W1, pval1 = stats.levene(g1, g2, g3, center='mean')
W2, pval2 = stats.levene(g1, g2, g3, center='trimmed', proportiontocut=0.0)
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_trimmed2(self):
x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
# Use center='trimmed'
W1, pval1 = stats.levene(x, y, center='trimmed', proportiontocut=0.125)
# Trim the data here, and use center='mean'
W2, pval2 = stats.levene(x[1:-1], y[1:-1], center='mean')
# Result should be the same.
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_equal_mean_median(self):
x = np.linspace(-1,1,21)
y = x**3
W1, pval1 = stats.levene(x, y, center='mean')
W2, pval2 = stats.levene(x, y, center='median')
assert_almost_equal(W1, W2)
assert_almost_equal(pval1, pval2)
def test_bad_keyword(self):
x = np.linspace(-1,1,21)
assert_raises(TypeError, stats.levene, x, x, portiontocut=0.1)
def test_bad_center_value(self):
x = np.linspace(-1,1,21)
assert_raises(ValueError, stats.levene, x, x, center='trim')
def test_too_few_args(self):
assert_raises(ValueError, stats.levene, [1])
class TestBinomP(TestCase):
def test_data(self):
pval = stats.binom_test(100,250)
assert_almost_equal(pval,0.0018833009350757682,11)
pval = stats.binom_test(201,405)
assert_almost_equal(pval,0.92085205962670713,11)
pval = stats.binom_test([682,243],p=3.0/4)
assert_almost_equal(pval,0.38249155957481695,11)
def test_bad_len_x(self):
"""Length of x must be 1 or 2."""
assert_raises(ValueError, stats.binom_test, [1,2,3])
def test_bad_n(self):
"""len(x) is 1, but n is invalid."""
# Missing n
assert_raises(ValueError, stats.binom_test, [100])
# n less than x[0]
assert_raises(ValueError, stats.binom_test, [100], n=50)
def test_bad_p(self):
assert_raises(ValueError, stats.binom_test, [50, 50], p=2.0)
class TestFindRepeats(TestCase):
def test_basic(self):
a = [1,2,3,4,1,2,3,4,1,2,5]
res,nums = stats.find_repeats(a)
assert_array_equal(res,[1,2,3,4])
assert_array_equal(nums,[3,3,2,2])
class TestFligner(TestCase):
def test_data(self):
# numbers from R: fligner.test in package stats
x1 = np.arange(5)
assert_array_almost_equal(stats.fligner(x1,x1**2),
(3.2282229927203536, 0.072379187848207877), 11)
def test_trimmed1(self):
"""Test that center='trimmed' gives the same result as center='mean' when proportiontocut=0."""
Xsq1, pval1 = stats.fligner(g1, g2, g3, center='mean')
Xsq2, pval2 = stats.fligner(g1, g2, g3, center='trimmed', proportiontocut=0.0)
assert_almost_equal(Xsq1, Xsq2)
assert_almost_equal(pval1, pval2)
def test_trimmed2(self):
x = [1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100.0]
y = [0.0, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 200.0]
# Use center='trimmed'
Xsq1, pval1 = stats.fligner(x, y, center='trimmed', proportiontocut=0.125)
# Trim the data here, and use center='mean'
Xsq2, pval2 = stats.fligner(x[1:-1], y[1:-1], center='mean')
# Result should be the same.
assert_almost_equal(Xsq1, Xsq2)
assert_almost_equal(pval1, pval2)
# The following test looks reasonable at first, but fligner() uses the
# function stats.rankdata(), and in one of the cases in this test,
# there are ties, while in the other (because of normal rounding
# errors) there are not. This difference leads to differences in the
# third significant digit of W.
#
#def test_equal_mean_median(self):
# x = np.linspace(-1,1,21)
# y = x**3
# W1, pval1 = stats.fligner(x, y, center='mean')
# W2, pval2 = stats.fligner(x, y, center='median')
# assert_almost_equal(W1, W2)
# assert_almost_equal(pval1, pval2)
def test_bad_keyword(self):
x = np.linspace(-1,1,21)
assert_raises(TypeError, stats.fligner, x, x, portiontocut=0.1)
def test_bad_center_value(self):
x = np.linspace(-1,1,21)
assert_raises(ValueError, stats.fligner, x, x, center='trim')
def test_bad_num_args(self):
"""Too few args raises ValueError."""
assert_raises(ValueError, stats.fligner, [1])
def test_mood():
# numbers from R: mood.test in package stats
x1 = np.arange(5)
assert_array_almost_equal(stats.mood(x1,x1**2),
(-1.3830857299399906, 0.16663858066771478), 11)
def test_mood_bad_arg():
"""Raise ValueError when the sum of the lengths of the args is less than 3."""
assert_raises(ValueError, stats.mood, [1], [])
def test_oneway_bad_arg():
"""Raise ValueError is fewer than two args are given."""
assert_raises(ValueError, stats.oneway, [1])
def test_wilcoxon_bad_arg():
"""Raise ValueError when two args of different lengths are given."""
assert_raises(ValueError, stats.wilcoxon, [1], [1,2])
def test_mvsdist_bad_arg():
"""Raise ValueError if fewer than two data points are given."""
data = [1]
assert_raises(ValueError, stats.mvsdist, data)
def test_kstat_bad_arg():
"""Raise ValueError if n > 4 or n > 1."""
data = [1]
n = 10
assert_raises(ValueError, stats.kstat, data, n=n)
def test_kstatvar_bad_arg():
"""Raise ValueError is n is not 1 or 2."""
data = [1]
n = 10
assert_raises(ValueError, stats.kstatvar, data, n=n)
def test_probplot_bad_arg():
"""Raise ValueError when given an invalid distribution."""
data = [1]
assert_raises(ValueError, stats.probplot, data, dist="plate_of_shrimp")
def test_ppcc_max_bad_arg():
"""Raise ValueError when given an invalid distribution."""
data = [1]
assert_raises(ValueError, stats.ppcc_max, data, dist="plate_of_shrimp")
def test_boxcox_bad_arg():
"""Raise ValueError if any data value is negative."""
x = np.array([-1])
assert_raises(ValueError, stats.boxcox, x)
if __name__ == "__main__":
run_module_suite()
|