1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
"""
Tests for the stats.mstats module (support for maskd arrays)
"""
import numpy as np
from numpy import nan
import numpy.ma as ma
from numpy.ma import masked, nomask
import scipy.stats.mstats as mstats
from numpy.testing import TestCase, run_module_suite
from numpy.ma.testutils import assert_equal, assert_almost_equal, \
assert_array_almost_equal, assert_
class TestMquantiles(TestCase):
"""Regression tests for mstats module."""
def test_mquantiles_limit_keyword(self):
"""Ticket #867"""
data = np.array([[ 6., 7., 1.],
[ 47., 15., 2.],
[ 49., 36., 3.],
[ 15., 39., 4.],
[ 42., 40., -999.],
[ 41., 41., -999.],
[ 7., -999., -999.],
[ 39., -999., -999.],
[ 43., -999., -999.],
[ 40., -999., -999.],
[ 36., -999., -999.]])
desired = [[19.2, 14.6, 1.45],
[40.0, 37.5, 2.5 ],
[42.8, 40.05, 3.55]]
quants = mstats.mquantiles(data, axis=0, limit=(0, 50))
assert_almost_equal(quants, desired)
class TestGMean(TestCase):
def test_1D(self):
a = (1,2,3,4)
actual= mstats.gmean(a)
desired = np.power(1*2*3*4,1./4.)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
assert_(not isinstance(desired1, ma.MaskedArray))
#
a = ma.array((1,2,3,4),mask=(0,0,0,1))
actual= mstats.gmean(a)
desired = np.power(1*2*3,1./3.)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.gmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
#
def test_2D(self):
a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
actual= mstats.gmean(a)
desired = np.array((1,2,3,4))
assert_array_almost_equal(actual, desired, decimal=14)
#
desired1 = mstats.gmean(a,axis=0)
assert_array_almost_equal(actual, desired1, decimal=14)
#
actual= mstats.gmean(a, -1)
desired = ma.array((np.power(1*2*3*4,1./4.),
np.power(2*3,1./2.),
np.power(1*4,1./2.)))
assert_array_almost_equal(actual, desired, decimal=14)
class TestHMean(TestCase):
def test_1D(self):
a = (1,2,3,4)
actual= mstats.hmean(a)
desired = 4. / (1./1 + 1./2 + 1./3 + 1./4)
assert_almost_equal(actual, desired, decimal=14)
desired1 = mstats.hmean(ma.array(a),axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
#
a = ma.array((1,2,3,4),mask=(0,0,0,1))
actual= mstats.hmean(a)
desired = 3. / (1./1 + 1./2 + 1./3)
assert_almost_equal(actual, desired,decimal=14)
desired1 = mstats.hmean(a,axis=-1)
assert_almost_equal(actual, desired1, decimal=14)
def test_2D(self):
a = ma.array(((1,2,3,4),(1,2,3,4),(1,2,3,4)),
mask=((0,0,0,0),(1,0,0,1),(0,1,1,0)))
actual= mstats.hmean(a)
desired = ma.array((1,2,3,4))
assert_array_almost_equal(actual, desired, decimal=14)
#
actual1 = mstats.hmean(a,axis=-1)
desired = (4./(1/1.+1/2.+1/3.+1/4.),
2./(1/2.+1/3.),
2./(1/1.+1/4.)
)
assert_array_almost_equal(actual1, desired, decimal=14)
class TestRanking(TestCase):
#
def __init__(self, *args, **kwargs):
TestCase.__init__(self, *args, **kwargs)
#
def test_ranking(self):
x = ma.array([0,1,1,1,2,3,4,5,5,6,])
assert_almost_equal(mstats.rankdata(x),[1,3,3,3,5,6,7,8.5,8.5,10])
x[[3,4]] = masked
assert_almost_equal(mstats.rankdata(x),[1,2.5,2.5,0,0,4,5,6.5,6.5,8])
assert_almost_equal(mstats.rankdata(x,use_missing=True),
[1,2.5,2.5,4.5,4.5,4,5,6.5,6.5,8])
x = ma.array([0,1,5,1,2,4,3,5,1,6,])
assert_almost_equal(mstats.rankdata(x),[1,3,8.5,3,5,7,6,8.5,3,10])
x = ma.array([[0,1,1,1,2], [3,4,5,5,6,]])
assert_almost_equal(mstats.rankdata(x),[[1,3,3,3,5],[6,7,8.5,8.5,10]])
assert_almost_equal(mstats.rankdata(x,axis=1),[[1,3,3,3,5],[1,2,3.5,3.5,5]])
assert_almost_equal(mstats.rankdata(x,axis=0),[[1,1,1,1,1],[2,2,2,2,2,]])
class TestCorr(TestCase):
#
def test_pearsonr(self):
"Tests some computations of Pearson's r"
x = ma.arange(10)
olderr = np.seterr(all='ignore')
try:
assert_almost_equal(mstats.pearsonr(x,x)[0], 1.0)
assert_almost_equal(mstats.pearsonr(x,x[::-1])[0], -1.0)
x = ma.array(x, mask=True)
pr = mstats.pearsonr(x,x)
finally:
np.seterr(**olderr)
assert_(pr[0] is masked)
assert_(pr[1] is masked)
#
def test_spearmanr(self):
"Tests some computations of Spearman's rho"
(x, y) = ([5.05,6.75,3.21,2.66],[1.65,2.64,2.64,6.95])
assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
(x, y) = ([5.05,6.75,3.21,2.66,np.nan],[1.65,2.64,2.64,6.95,np.nan])
(x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
assert_almost_equal(mstats.spearmanr(x,y)[0], -0.6324555)
#
x = [ 2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7]
y = [22.6, 08.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4]
assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
x = [ 2.0, 47.4, 42.0, 10.8, 60.1, 1.7, 64.0, 63.1,
1.0, 1.4, 7.9, 0.3, 3.9, 0.3, 6.7, np.nan]
y = [22.6, 08.3, 44.4, 11.9, 24.6, 0.6, 5.7, 41.6,
0.0, 0.6, 6.7, 3.8, 1.0, 1.2, 1.4, np.nan]
(x, y) = (ma.fix_invalid(x), ma.fix_invalid(y))
assert_almost_equal(mstats.spearmanr(x,y)[0], 0.6887299)
#
def test_kendalltau(self):
"Tests some computations of Kendall's tau"
x = ma.fix_invalid([5.05, 6.75, 3.21, 2.66,np.nan])
y = ma.fix_invalid([1.65, 26.5, -5.93, 7.96, np.nan])
z = ma.fix_invalid([1.65, 2.64, 2.64, 6.95, np.nan])
assert_almost_equal(np.asarray(mstats.kendalltau(x,y)),
[+0.3333333,0.4969059])
assert_almost_equal(np.asarray(mstats.kendalltau(x,z)),
[-0.5477226,0.2785987])
#
x = ma.fix_invalid([ 0, 0, 0, 0,20,20, 0,60, 0,20,
10,10, 0,40, 0,20, 0, 0, 0, 0, 0, np.nan])
y = ma.fix_invalid([ 0,80,80,80,10,33,60, 0,67,27,
25,80,80,80,80,80,80, 0,10,45, np.nan, 0])
result = mstats.kendalltau(x,y)
assert_almost_equal(np.asarray(result), [-0.1585188, 0.4128009])
#
def test_kendalltau_seasonal(self):
"Tests the seasonal Kendall tau."
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[ 4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[ 3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
x = ma.fix_invalid(x).T
output = mstats.kendalltau_seasonal(x)
assert_almost_equal(output['global p-value (indep)'], 0.008, 3)
assert_almost_equal(output['seasonal p-value'].round(2),
[0.18,0.53,0.20,0.04])
#
def test_pointbiserial(self):
"Tests point biserial"
x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,1,-1]
y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,
2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,
0.8,0.7,0.6,0.5,0.2,0.2,0.1,np.nan]
assert_almost_equal(mstats.pointbiserialr(x, y)[0], 0.36149, 5)
class TestTrimming(TestCase):
#
def test_trim(self):
"Tests trimming"
a = ma.arange(10)
assert_equal(mstats.trim(a), [0,1,2,3,4,5,6,7,8,9])
a = ma.arange(10)
assert_equal(mstats.trim(a,(2,8)), [None,None,2,3,4,5,6,7,8,None])
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(2,8),inclusive=(False,False)),
[None,None,None,3,4,5,6,7,None,None])
a = ma.arange(10)
assert_equal(mstats.trim(a,limits=(0.1,0.2),relative=True),
[None,1,2,3,4,5,6,7,None,None])
#
a = ma.arange(12)
a[[0,-1]] = a[5] = masked
assert_equal(mstats.trim(a,(2,8)),
[None,None,2,3,4,None,6,7,8,None,None,None])
#
x = ma.arange(100).reshape(10,10)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
assert_equal(trimx._mask.ravel(),[1]*10+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=-1)
assert_equal(trimx._mask.T.ravel(),[1]*10+[0]*70+[1]*20)
#
x = ma.arange(110).reshape(11,10)
x[1] = masked
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=None)
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
trimx = mstats.trim(x,(0.1,0.2),relative=True,axis=0)
assert_equal(trimx._mask.ravel(),[1]*20+[0]*70+[1]*20)
trimx = mstats.trim(x.T,(0.1,0.2),relative=True,axis=-1)
assert_equal(trimx.T._mask.ravel(),[1]*20+[0]*70+[1]*20)
#
def test_trim_old(self):
"Tests trimming."
x = ma.arange(100)
assert_equal(mstats.trimboth(x).count(), 60)
assert_equal(mstats.trimtail(x,tail='r').count(), 80)
x[50:70] = masked
trimx = mstats.trimboth(x)
assert_equal(trimx.count(), 48)
assert_equal(trimx._mask, [1]*16 + [0]*34 + [1]*20 + [0]*14 + [1]*16)
x._mask = nomask
x.shape = (10,10)
assert_equal(mstats.trimboth(x).count(), 60)
assert_equal(mstats.trimtail(x).count(), 80)
#
def test_trimmedmean(self):
"Tests the trimmed mean."
data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(mstats.trimmed_mean(data,0.1), 343, 0)
assert_almost_equal(mstats.trimmed_mean(data,(0.1,0.1)), 343, 0)
assert_almost_equal(mstats.trimmed_mean(data,(0.2,0.2)), 283, 0)
#
def test_trimmed_stde(self):
"Tests the trimmed mean standard error."
data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(mstats.trimmed_stde(data,(0.2,0.2)), 56.13193, 5)
assert_almost_equal(mstats.trimmed_stde(data,0.2), 56.13193, 5)
#
def test_winsorization(self):
"Tests the Winsorization of the data."
data = ma.array([ 77, 87, 88,114,151,210,219,246,253,262,
296,299,306,376,428,515,666,1310,2611])
assert_almost_equal(mstats.winsorize(data,(0.2,0.2)).var(ddof=1),
21551.4, 1)
data[5] = masked
winsorized = mstats.winsorize(data)
assert_equal(winsorized.mask, data.mask)
class TestMoments(TestCase):
"""
Comparison numbers are found using R v.1.5.1
note that length(testcase) = 4
testmathworks comes from documentation for the
Statistics Toolbox for Matlab and can be found at both
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
Note that both test cases came from here.
"""
testcase = [1,2,3,4]
testmathworks = ma.fix_invalid([1.165 , 0.6268, 0.0751, 0.3516, -0.6965,
np.nan])
def test_moment(self):
"""
mean((testcase-mean(testcase))**power,axis=0),axis=0))**power))"""
y = mstats.moment(self.testcase,1)
assert_almost_equal(y,0.0,10)
y = mstats.moment(self.testcase,2)
assert_almost_equal(y,1.25)
y = mstats.moment(self.testcase,3)
assert_almost_equal(y,0.0)
y = mstats.moment(self.testcase,4)
assert_almost_equal(y,2.5625)
def test_variation(self):
"""variation = samplestd/mean """
## y = stats.variation(self.shoes[0])
## assert_almost_equal(y,21.8770668)
y = mstats.variation(self.testcase)
assert_almost_equal(y,0.44721359549996, 10)
def test_skewness(self):
"""
sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0)/((sqrt(var(testmathworks)*4/5))**3)/5
"""
y = mstats.skew(self.testmathworks)
assert_almost_equal(y,-0.29322304336607,10)
y = mstats.skew(self.testmathworks,bias=0)
assert_almost_equal(y,-0.437111105023940,10)
y = mstats.skew(self.testcase)
assert_almost_equal(y,0.0,10)
def test_kurtosis(self):
"""
sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4
sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5
Set flags for axis = 0 and
fisher=0 (Pearson's definition of kurtosis for compatibility with Matlab)
"""
y = mstats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
assert_almost_equal(y, 2.1658856802973,10)
# Note that MATLAB has confusing docs for the following case
# kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
# kurtosis(x) gives a biased estimate of Fisher's skewness (Pearson-3)
# The MATLAB docs imply that both should give Fisher's
y = mstats.kurtosis(self.testmathworks,fisher=0,bias=0)
assert_almost_equal(y, 3.663542721189047,10)
y = mstats.kurtosis(self.testcase,0,0)
assert_almost_equal(y,1.64)
#
def test_mode(self):
"Tests the mode"
#
a1 = [0,0,0,1,1,1,2,3,3,3,3,4,5,6,7]
a2 = np.reshape(a1, (3,5))
ma1 = ma.masked_where(ma.array(a1)>2,a1)
ma2 = ma.masked_where(a2>2, a2)
assert_equal(mstats.mode(a1, axis=None), (3,4))
assert_equal(mstats.mode(ma1, axis=None), (0,3))
assert_equal(mstats.mode(a2, axis=None), (3,4))
assert_equal(mstats.mode(ma2, axis=None), (0,3))
assert_equal(mstats.mode(a2, axis=0), ([[0,0,0,1,1]],[[1,1,1,1,1]]))
assert_equal(mstats.mode(ma2, axis=0), ([[0,0,0,1,1]],[[1,1,1,1,1]]))
assert_equal(mstats.mode(a2, axis=-1), ([[0],[3],[3]], [[3],[3],[1]]))
assert_equal(mstats.mode(ma2, axis=-1), ([[0],[1],[0]], [[3],[1],[0]]))
class TestPercentile(TestCase):
def setUp(self):
self.a1 = [3,4,5,10,-3,-5,6]
self.a2 = [3,-6,-2,8,7,4,2,1]
self.a3 = [3.,4,5,10,-3,-5,-6,7.0]
def test_percentile(self):
x = np.arange(8) * 0.5
assert_equal(mstats.scoreatpercentile(x, 0), 0.)
assert_equal(mstats.scoreatpercentile(x, 100), 3.5)
assert_equal(mstats.scoreatpercentile(x, 50), 1.75)
def test_2D(self):
x = ma.array([[1, 1, 1],
[1, 1, 1],
[4, 4, 3],
[1, 1, 1],
[1, 1, 1]])
assert_equal(mstats.scoreatpercentile(x,50), [1,1,1])
class TestVariability(TestCase):
""" Comparison numbers are found using R v.1.5.1
note that length(testcase) = 4
"""
testcase = ma.fix_invalid([1,2,3,4,np.nan])
def test_signaltonoise(self):
"""
this is not in R, so used
mean(testcase,axis=0)/(sqrt(var(testcase)*3/4)) """
#y = stats.signaltonoise(self.shoes[0])
#assert_approx_equal(y,4.5709967)
y = mstats.signaltonoise(self.testcase)
assert_almost_equal(y,2.236067977)
def test_sem(self):
"""
this is not in R, so used
sqrt(var(testcase)*3/4)/sqrt(3)
"""
#y = stats.sem(self.shoes[0])
#assert_approx_equal(y,0.775177399)
y = mstats.sem(self.testcase)
assert_almost_equal(y,0.6454972244)
def test_zmap(self):
"""
not in R, so tested by using
(testcase[i]-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
"""
y = mstats.zmap(self.testcase, self.testcase)
desired_unmaskedvals = ([-1.3416407864999, -0.44721359549996 ,
0.44721359549996 , 1.3416407864999])
assert_array_almost_equal(desired_unmaskedvals,
y.data[y.mask==False], decimal=12)
def test_zscore(self):
"""
not in R, so tested by using
(testcase[i]-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
"""
y = mstats.zscore(self.testcase)
desired = ma.fix_invalid([-1.3416407864999, -0.44721359549996 ,
0.44721359549996 , 1.3416407864999, np.nan])
assert_almost_equal(desired, y, decimal=12)
class TestMisc(TestCase):
#
def test_obrientransform(self):
"Tests Obrien transform"
args = [[5]*5+[6]*11+[7]*9+[8]*3+[9]*2+[10]*2,
[6]+[7]*2+[8]*4+[9]*9+[10]*16]
result = [5*[3.1828]+11*[0.5591]+9*[0.0344]+3*[1.6086]+2*[5.2817]+2*[11.0538],
[10.4352]+2*[4.8599]+4*[1.3836]+9*[0.0061]+16*[0.7277]]
assert_almost_equal(np.round(mstats.obrientransform(*args).T,4),
result,4)
#
def test_kstwosamp(self):
"Tests the Kolmogorov-Smirnov 2 samples test"
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[ 4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[ 3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
x = ma.fix_invalid(x).T
(winter,spring,summer,fall) = x.T
#
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring),4),
(0.1818,0.9892))
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'g'),4),
(0.1469,0.7734))
assert_almost_equal(np.round(mstats.ks_twosamp(winter,spring,'l'),4),
(0.1818,0.6744))
#
def test_friedmanchisq(self):
"Tests the Friedman Chi-square test"
# No missing values
args = ([9.0,9.5,5.0,7.5,9.5,7.5,8.0,7.0,8.5,6.0],
[7.0,6.5,7.0,7.5,5.0,8.0,6.0,6.5,7.0,7.0],
[6.0,8.0,4.0,6.0,7.0,6.5,6.0,4.0,6.5,3.0])
result = mstats.friedmanchisquare(*args)
assert_almost_equal(result[0], 10.4737, 4)
assert_almost_equal(result[1], 0.005317, 6)
# Missing values
x = [[nan,nan, 4, 2, 16, 26, 5, 1, 5, 1, 2, 3, 1],
[ 4, 3, 5, 3, 2, 7, 3, 1, 1, 2, 3, 5, 3],
[ 3, 2, 5, 6, 18, 4, 9, 1, 1,nan, 1, 1,nan],
[nan, 6, 11, 4, 17,nan, 6, 1, 1, 2, 5, 1, 1]]
x = ma.fix_invalid(x)
result = mstats.friedmanchisquare(*x)
assert_almost_equal(result[0], 2.0156, 4)
assert_almost_equal(result[1], 0.5692, 4)
def test_regress_simple():
"""Regress a line with sinusoidal noise. Test for #1273."""
x = np.linspace(0, 100, 100)
y = 0.2 * np.linspace(0, 100, 100) + 10
y += np.sin(np.linspace(0, 20, 100))
slope, intercept, r_value, p_value, sterr = mstats.linregress(x, y)
assert_almost_equal(slope, 0.19644990055858422)
assert_almost_equal(intercept, 10.211269918932341)
def test_plotting_positions():
"""Regression test for #1256"""
pos = mstats.plotting_positions(np.arange(3), 0, 0)
assert_array_almost_equal(pos.data, np.array([0.25, 0.5, 0.75]))
if __name__ == "__main__":
run_module_suite()
|