File: test_stats.py

package info (click to toggle)
python-scipy 0.10.1%2Bdfsg2-1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 42,232 kB
  • sloc: cpp: 224,773; ansic: 103,496; python: 85,210; fortran: 79,130; makefile: 272; sh: 43
file content (1964 lines) | stat: -rw-r--r-- 76,102 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
""" Test functions for stats module

    WRITTEN BY LOUIS LUANGKESORN <lluang@yahoo.com> FOR THE STATS MODULE
    BASED ON WILKINSON'S STATISTICS QUIZ
    http://www.stanford.edu/~clint/bench/wilk.txt

    Additional tests by a host of SciPy developers.
"""

from numpy.testing import TestCase, rand, assert_, assert_equal, \
    assert_almost_equal, assert_array_almost_equal, assert_array_equal, \
    assert_approx_equal, assert_raises, run_module_suite, \
    assert_allclose, dec
from numpy import array, arange, zeros, ravel, float32, float64, power
import numpy as np
import sys

import scipy.stats as stats


""" Numbers in docstrings begining with 'W' refer to the section numbers
    and headings found in the STATISTICS QUIZ of Leland Wilkinson.  These are
    considered to be essential functionality.  True testing and
    evaluation of a statistics package requires use of the
    NIST Statistical test data.  See McCoullough(1999) Assessing The Reliability
    of Statistical Software for a test methodology and its
    implementation in testing SAS, SPSS, and S-Plus
"""

##  Datasets
##  These data sets are from the nasty.dat sets used by Wilkinson
##  for MISS, need to be able to represent missing values
##  For completeness, I should write the relevant tests and count them as failures
##  Somewhat acceptable, since this is still beta software.  It would count as a
##  good target for 1.0 status
X = array([1,2,3,4,5,6,7,8,9],float)
ZERO= array([0,0,0,0,0,0,0,0,0], float)
#MISS=array([.,.,.,.,.,.,.,.,.], float)
BIG=array([99999991,99999992,99999993,99999994,99999995,99999996,99999997,99999998,99999999],float)
LITTLE=array([0.99999991,0.99999992,0.99999993,0.99999994,0.99999995,0.99999996,0.99999997,0.99999998,0.99999999],float)
HUGE=array([1e+12,2e+12,3e+12,4e+12,5e+12,6e+12,7e+12,8e+12,9e+12],float)
TINY=array([1e-12,2e-12,3e-12,4e-12,5e-12,6e-12,7e-12,8e-12,9e-12],float)
ROUND=array([0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5],float)
X2 = X * X
X3 = X2 * X
X4 = X3 * X
X5 = X4 * X
X6 = X5 * X
X7 = X6 * X
X8 = X7 * X
X9 = X8 * X

class TestRound(TestCase):
    """ W.II. ROUND

        You should get the numbers 1 to 9.  Many language compilers,
        such as Turbo Pascal and Lattice C, fail this test (they round
        numbers inconsistently). Needless to say, statical packages
        written in these languages may fail the test as well.  You can
        also check the following expressions:
            Y = INT(2.6*7 -0.2)                   (Y should be 18)
            Y = 2-INT(EXP(LOG(SQR(2)*SQR(2))))    (Y should be 0)
            Y = INT(3-EXP(LOG(SQR(2)*SQR(2))))    (Y should be 1)
        INT is the integer function.  It converts decimal numbers to
        integers by throwing away numbers after the decimal point.  EXP
        is exponential, LOG is logarithm, and SQR is suqare root.  You may
        have to substitute similar names for these functions for different
        packages.  Since the square of a square root should return the same
        number, and the exponential of a log should return the same number,
        we should get back a 2 from this function of functions.  By taking
        the integer result and subtracting from 2, we are exposing the
        roundoff errors.  These simple functions are at the heart of
        statistical calculations.
    """

    def test_rounding0(self):
        """ W.II.A.0. Print ROUND with only one digit.

            You should get the numbers 1 to 9.  Many language compilers,
            such as Turbo Pascal and Lattice C, fail this test (they round
            numbers inconsistently). Needless to say, statical packages
            written in these languages may fail the test as well.
        """
        if sys.version_info[0] >= 3:
            # round to even
            for i in range(0,9):
                y = round(ROUND[i])
                assert_equal(y, 2*((i+1)//2))
        else:
            for i in range(0,9):
                y = round(ROUND[i])
                assert_equal(y,i+1)

    def test_rounding1(self):
        """ W.II.A.1. Y = INT(2.6*7 -0.2) (Y should be 18)"""
        y = int(2.6*7 -0.2)
        assert_equal(y, 18)

    def test_rounding2(self):
        """ W.II.A.2. Y = 2-INT(EXP(LOG(SQR(2)*SQR(2))))   (Y should be 0)"""
        y=2-int(np.exp(np.log(np.sqrt(2.)*np.sqrt(2.))))
        assert_equal(y,0)

    def test_rounding3(self):
        """ W.II.A.3. Y = INT(3-EXP(LOG(SQR(2)*SQR(2))))    (Y should be 1)"""
        y=(int(round((3-np.exp(np.log(np.sqrt(2.0)*np.sqrt(2.0)))))))
        assert_equal(y,1)

class TestBasicStats(TestCase):
    """ W.II.C. Compute basic statistic on all the variables.

        The means should be the fifth value of all the variables (case FIVE).
        The standard deviations should be "undefined" or missing for MISS,
        0 for ZERO, and 2.738612788 (times 10 to a power) for all the other variables.
        II. C. Basic Statistics
    """

    dprec = np.finfo(np.float64).precision

    # Really need to write these tests to handle missing values properly
    def test_tmeanX(self):
        y = stats.tmean(X, (2, 8), (True, True))
        assert_approx_equal(y, 5.0, significant=TestBasicStats.dprec)

    def test_tvarX(self):
        y = stats.tvar(X, (2, 8), (True, True))
        assert_approx_equal(y, 4.6666666666666661,
                            significant=TestBasicStats.dprec)

    def test_tstdX(self):
        y = stats.tstd(X, (2, 8), (True, True))
        assert_approx_equal(y, 2.1602468994692865,
                            significant=TestBasicStats.dprec)



class TestNanFunc(TestCase):
    def __init__(self, *args, **kw):
        TestCase.__init__(self, *args, **kw)
        self.X = X.copy()

        self.Xall = X.copy()
        self.Xall[:] = np.nan

        self.Xsome = X.copy()
        self.Xsomet = X.copy()
        self.Xsome[0] = np.nan
        self.Xsomet = self.Xsomet[1:]

    def test_nanmean_none(self):
        """Check nanmean when no values are nan."""
        m = stats.nanmean(X)
        assert_approx_equal(m, X[4])

    def test_nanmean_some(self):
        """Check nanmean when some values only are nan."""
        m = stats.nanmean(self.Xsome)
        assert_approx_equal(m, 5.5)

    def test_nanmean_all(self):
        """Check nanmean when all values are nan."""
        olderr = np.seterr(all='ignore')
        try:
            m = stats.nanmean(self.Xall)
        finally:
            np.seterr(**olderr)
        assert_(np.isnan(m))

    def test_nanstd_none(self):
        """Check nanstd when no values are nan."""
        s = stats.nanstd(self.X)
        assert_approx_equal(s, np.std(self.X, ddof=1))

    def test_nanstd_some(self):
        """Check nanstd when some values only are nan."""
        s = stats.nanstd(self.Xsome)
        assert_approx_equal(s, np.std(self.Xsomet, ddof=1))

    def test_nanstd_all(self):
        """Check nanstd when all values are nan."""
        olderr = np.seterr(all='ignore')
        try:
            s = stats.nanstd(self.Xall)
        finally:
            np.seterr(**olderr)
        assert_(np.isnan(s))

    def test_nanstd_negative_axis(self):
        x = np.array([1, 2, 3])
        assert_equal(stats.nanstd(x, -1), 1)

    def test_nanmedian_none(self):
        """Check nanmedian when no values are nan."""
        m = stats.nanmedian(self.X)
        assert_approx_equal(m, np.median(self.X))

    def test_nanmedian_some(self):
        """Check nanmedian when some values only are nan."""
        m = stats.nanmedian(self.Xsome)
        assert_approx_equal(m, np.median(self.Xsomet))

    def test_nanmedian_all(self):
        """Check nanmedian when all values are nan."""
        m = stats.nanmedian(self.Xall)
        assert_(np.isnan(m))

    def test_nanmedian_scalars(self):
        """Check nanmedian for scalar inputs. See ticket #1098."""
        assert_equal(stats.nanmedian(1), np.median(1))
        assert_equal(stats.nanmedian(True), np.median(True))
        assert_equal(stats.nanmedian(np.array(1)), np.median(np.array(1)))
        assert_equal(stats.nanmedian(np.nan), np.median(np.nan))


class TestCorrPearsonr(TestCase):
    """ W.II.D. Compute a correlation matrix on all the variables.

        All the correlations, except for ZERO and MISS, shoud be exactly 1.
        ZERO and MISS should have undefined or missing correlations with the
        other variables.  The same should go for SPEARMAN corelations, if
        your program has them.
    """
    def test_pXX(self):
        y = stats.pearsonr(X,X)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pXBIG(self):
        y = stats.pearsonr(X,BIG)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pXLITTLE(self):
        y = stats.pearsonr(X,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pXHUGE(self):
        y = stats.pearsonr(X,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pXTINY(self):
        y = stats.pearsonr(X,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pXROUND(self):
        y = stats.pearsonr(X,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pBIGBIG(self):
        y = stats.pearsonr(BIG,BIG)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pBIGLITTLE(self):
        y = stats.pearsonr(BIG,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pBIGHUGE(self):
        y = stats.pearsonr(BIG,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pBIGTINY(self):
        y = stats.pearsonr(BIG,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pBIGROUND(self):
        y = stats.pearsonr(BIG,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pLITTLELITTLE(self):
        y = stats.pearsonr(LITTLE,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pLITTLEHUGE(self):
        y = stats.pearsonr(LITTLE,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pLITTLETINY(self):
        y = stats.pearsonr(LITTLE,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pLITTLEROUND(self):
        y = stats.pearsonr(LITTLE,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pHUGEHUGE(self):
        y = stats.pearsonr(HUGE,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pHUGETINY(self):
        y = stats.pearsonr(HUGE,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pHUGEROUND(self):
        y = stats.pearsonr(HUGE,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pTINYTINY(self):
        y = stats.pearsonr(TINY,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pTINYROUND(self):
        y = stats.pearsonr(TINY,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_pROUNDROUND(self):
        y = stats.pearsonr(ROUND,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_r_exactly_pos1(self):
        a = arange(3.0)
        b = a
        r, prob = stats.pearsonr(a,b)
        assert_equal(r, 1.0)
        assert_equal(prob, 0.0)

    def test_r_exactly_neg1(self):
        a = arange(3.0)
        b = -a
        r, prob = stats.pearsonr(a,b)
        assert_equal(r, -1.0)
        assert_equal(prob, 0.0)

class TestFisherExact(TestCase):
    """Some tests to show that fisher_exact() works correctly.

    Note that in SciPy 0.9.0 this was not working well for large numbers due to
    inaccuracy of the hypergeom distribution (see #1218). Fixed now.

    Also note that R and Scipy have different argument formats for their
    hypergeometric distribution functions.

    R:
    > phyper(18999, 99000, 110000, 39000, lower.tail = FALSE)
    [1] 1.701815e-09
    """
    def test_basic(self):
        fisher_exact = stats.fisher_exact

        res = fisher_exact([[14500, 20000], [30000, 40000]])[1]
        assert_approx_equal(res, 0.01106, significant=4)
        res = fisher_exact([[100, 2], [1000, 5]])[1]
        assert_approx_equal(res, 0.1301, significant=4)
        res = fisher_exact([[2, 7], [8, 2]])[1]
        assert_approx_equal(res, 0.0230141, significant=6)
        res = fisher_exact([[5, 1], [10, 10]])[1]
        assert_approx_equal(res, 0.1973244, significant=6)
        res = fisher_exact([[5, 15], [20, 20]])[1]
        assert_approx_equal(res, 0.0958044, significant=6)
        res = fisher_exact([[5, 16], [20, 25]])[1]
        assert_approx_equal(res, 0.1725862, significant=6)
        res = fisher_exact([[10, 5], [10, 1]])[1]
        assert_approx_equal(res, 0.1973244, significant=6)
        res = fisher_exact([[5, 0], [1, 4]])[1]
        assert_approx_equal(res, 0.04761904, significant=6)
        res = fisher_exact([[0, 1], [3, 2]])[1]
        assert_approx_equal(res, 1.0)
        res = fisher_exact([[0, 2], [6, 4]])[1]
        assert_approx_equal(res, 0.4545454545)
        res = fisher_exact([[2, 7], [8, 2]])
        assert_approx_equal(res[1], 0.0230141, significant=6)
        assert_approx_equal(res[0], 4.0 / 56)

    def test_precise(self):
        fisher_exact = stats.fisher_exact

        # results from R
        #
        # R defines oddsratio differently (see Notes section of fisher_exact
        # docstring), so those will not match.  We leave them in anyway, in
        # case they will be useful later on. We test only the p-value.
        tablist = [
            ([[100, 2], [1000, 5]], (2.505583993422285e-001,  1.300759363430016e-001)),
            ([[2, 7], [8, 2]], (8.586235135736206e-002,  2.301413756522114e-002)),
            ([[5, 1], [10, 10]], (4.725646047336584e+000,  1.973244147157190e-001)),
            ([[5, 15], [20, 20]], (3.394396617440852e-001,  9.580440012477637e-002)),
            ([[5, 16], [20, 25]], (3.960558326183334e-001,  1.725864953812994e-001)),
            ([[10, 5], [10, 1]], (2.116112781158483e-001,  1.973244147157190e-001)),
            ([[10, 5], [10, 0]], (0.000000000000000e+000,  6.126482213438734e-002)),
            ([[5, 0], [1, 4]], (np.inf,  4.761904761904762e-002)),
            ([[0, 5], [1, 4]], (0.000000000000000e+000,  1.000000000000000e+000)),
            ([[5, 1], [0, 4]], (np.inf,  4.761904761904758e-002)),
            ([[0, 1], [3, 2]], (0.000000000000000e+000,  1.000000000000000e+000))
            ]
        for table, res_r in tablist:
            res = stats.fisher_exact(np.asarray(table))
            np.testing.assert_almost_equal(res[1], res_r[1], decimal=11,
                                           verbose=True)

    @dec.slow
    def test_large_numbers(self):
        # Test with some large numbers. Regression test for #1401
        pvals = [5.56e-11, 2.666e-11, 1.363e-11]  # from R
        for pval, num in zip(pvals, [75, 76, 77]):
            res = stats.fisher_exact([[17704, 496], [1065, num]])[1]
            assert_approx_equal(res, pval, significant=4)

        res = stats.fisher_exact([[18000, 80000], [20000, 90000]])[1]
        assert_approx_equal(res, 0.2751, significant=4)

    def test_raises(self):
        # test we raise an error for wrong shape of input.
        assert_raises(ValueError, stats.fisher_exact,
                      np.arange(6).reshape(2, 3))

    def test_row_or_col_zero(self):
        tables = ([[0, 0], [5, 10]],
                  [[5, 10], [0, 0]],
                  [[0, 5], [0, 10]],
                  [[5, 0], [10, 0]])
        for table in tables:
            oddsratio, pval = stats.fisher_exact(table)
            assert_equal(pval, 1.0)
            assert_equal(oddsratio, np.nan)

    def test_less_greater(self):
        tables = (
            # Some tables to compare with R:
            [[2, 7], [8, 2]],
            [[200, 7], [8, 300]],
            [[28, 21], [6, 1957]],
            [[190, 800], [200, 900]],
            # Some tables with simple exact values
            # (includes regression test for ticket #1568):
            [[0, 2], [3, 0]],
            [[1, 1], [2, 1]],
            [[2, 0], [1, 2]],
            [[0, 1], [2, 3]],
            [[1, 0], [1, 4]],
            )
        pvals = (
            # from R:
            [0.018521725952066501, 0.9990149169715733],
            [1.0, 2.0056578803889148e-122],
            [1.0, 5.7284374608319831e-44],
            [0.7416227, 0.2959826],
            # Exact:
            [0.1, 1.0],
            [0.7, 0.9],
            [1.0, 0.3],
            [2./3, 1.0],
            [1.0, 1./3],
            )
        for table, pval in zip(tables, pvals):
            res = []
            res.append(stats.fisher_exact(table, alternative="less")[1])
            res.append(stats.fisher_exact(table, alternative="greater")[1])
            assert_allclose(res, pval, atol=0, rtol=1e-7)


class TestCorrSpearmanr(TestCase):
    """ W.II.D. Compute a correlation matrix on all the variables.

        All the correlations, except for ZERO and MISS, shoud be exactly 1.
        ZERO and MISS should have undefined or missing correlations with the
        other variables.  The same should go for SPEARMAN corelations, if
        your program has them.
    """
    def test_sXX(self):
        y = stats.spearmanr(X,X)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sXBIG(self):
        y = stats.spearmanr(X,BIG)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sXLITTLE(self):
        y = stats.spearmanr(X,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sXHUGE(self):
        y = stats.spearmanr(X,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sXTINY(self):
        y = stats.spearmanr(X,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sXROUND(self):
        y = stats.spearmanr(X,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sBIGBIG(self):
        y = stats.spearmanr(BIG,BIG)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sBIGLITTLE(self):
        y = stats.spearmanr(BIG,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sBIGHUGE(self):
        y = stats.spearmanr(BIG,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sBIGTINY(self):
        y = stats.spearmanr(BIG,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sBIGROUND(self):
        y = stats.spearmanr(BIG,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sLITTLELITTLE(self):
        y = stats.spearmanr(LITTLE,LITTLE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sLITTLEHUGE(self):
        y = stats.spearmanr(LITTLE,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sLITTLETINY(self):
        y = stats.spearmanr(LITTLE,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sLITTLEROUND(self):
        y = stats.spearmanr(LITTLE,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sHUGEHUGE(self):
        y = stats.spearmanr(HUGE,HUGE)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sHUGETINY(self):
        y = stats.spearmanr(HUGE,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sHUGEROUND(self):
        y = stats.spearmanr(HUGE,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sTINYTINY(self):
        y = stats.spearmanr(TINY,TINY)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sTINYROUND(self):
        y = stats.spearmanr(TINY,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

    def test_sROUNDROUND(self):
        y = stats.spearmanr(ROUND,ROUND)
        r = y[0]
        assert_approx_equal(r,1.0)

class TestCorrSpearmanrTies(TestCase):
    """Some tests of tie-handling by the spearmanr function."""

    def test_tie1(self):
        # Data
        x = [1.0, 2.0, 3.0, 4.0]
        y = [1.0, 2.0, 2.0, 3.0]
        # Ranks of the data, with tie-handling.
        xr = [1.0, 2.0, 3.0, 4.0]
        yr = [1.0, 2.5, 2.5, 4.0]
        # Result of spearmanr should be the same as applying
        # pearsonr to the ranks.
        sr = stats.spearmanr(x, y)
        pr = stats.pearsonr(xr, yr)
        assert_almost_equal(sr, pr)


##    W.II.E.  Tabulate X against X, using BIG as a case weight.  The values
##    should appear on the diagonal and the total should be 899999955.
##    If the table cannot hold these values, forget about working with
##    census data.  You can also tabulate HUGE against TINY.  There is no
##    reason a tabulation program should not be able to distinguish
##    different values regardless of their magnitude.

### I need to figure out how to do this one.


def test_kendalltau():
    """Some tests for kendalltau."""

    # with some ties
    x1 = [12, 2, 1, 12, 2]
    x2 = [1, 4, 7, 1, 0]
    expected = (-0.47140452079103173, 0.24821309157521476)
    res = stats.kendalltau(x1, x2)
    assert_approx_equal(res[0], expected[0])
    assert_approx_equal(res[1], expected[1])

    # check two different sort methods
    assert_approx_equal(stats.kendalltau(x1, x2, initial_lexsort=False)[1],
                        stats.kendalltau(x1, x2, initial_lexsort=True)[1])

    # and with larger arrays
    np.random.seed(7546)
    x = np.array([np.random.normal(loc=1, scale=1, size=500),
                np.random.normal(loc=1, scale=1, size=500)])
    corr = [[1.0, 0.3],
            [0.3, 1.0]]
    x = np.dot(np.linalg.cholesky(corr), x)
    expected = (0.19291382765531062, 1.1337108207276285e-10)
    res = stats.kendalltau(x[0], x[1])
    assert_approx_equal(res[0], expected[0])
    assert_approx_equal(res[1], expected[1])

    # and do we get a tau of 1 for identical inputs?
    assert_approx_equal(stats.kendalltau([1,1,2], [1,1,2])[0], 1.0)


class TestRegression(TestCase):
    def test_linregressBIGX(self):
        """ W.II.F.  Regress BIG on X.

            The constant should be 99999990 and the regression coefficient should be 1.
        """
        y = stats.linregress(X,BIG)
        intercept = y[1]
        r=y[2]
        assert_almost_equal(intercept,99999990)
        assert_almost_equal(r,1.0)

##     W.IV.A. Take the NASTY dataset above.  Use the variable X as a
##     basis for computing polynomials.  Namely, compute X1=X, X2=X*X,
##     X3=X*X*X, and so on up to 9 products.  Use the algebraic
##     transformation language within the statistical package itself.  You
##     will end up with 9 variables.  Now regress X1 on X2-X9 (a perfect
##     fit).  If the package balks (singular or roundoff error messages),
##     try X1 on X2-X8, and so on.  Most packages cannot handle more than
##     a few polynomials.
##     Scipy's stats.py does not seem to handle multiple linear regression
##     The datasets X1 . . X9 are at the top of the file.


    def test_regressXX(self):
        """ W.IV.B.  Regress X on X.

            The constant should be exactly 0 and the regression coefficient should be 1.
            This is a perfectly valid regression.  The program should not complain.
        """
        y = stats.linregress(X,X)
        intercept = y[1]
        r=y[2]
        assert_almost_equal(intercept,0.0)
        assert_almost_equal(r,1.0)
##     W.IV.C. Regress X on BIG and LITTLE (two predictors).  The program
##     should tell you that this model is "singular" because BIG and
##     LITTLE are linear combinations of each other.  Cryptic error
##     messages are unacceptable here.  Singularity is the most
##     fundamental regression error.
### Need to figure out how to handle multiple linear regression.  Not obvious

    def test_regressZEROX(self):
        """ W.IV.D. Regress ZERO on X.

            The program should inform you that ZERO has no variance or it should
            go ahead and compute the regression and report a correlation and
            total sum of squares of exactly 0.
        """
        y = stats.linregress(X,ZERO)
        intercept = y[1]
        r=y[2]
        assert_almost_equal(intercept,0.0)
        assert_almost_equal(r,0.0)

    def test_regress_simple(self):
        """Regress a line with sinusoidal noise."""
        x = np.linspace(0, 100, 100)
        y = 0.2 * np.linspace(0, 100, 100) + 10
        y += np.sin(np.linspace(0, 20, 100))

        res = stats.linregress(x, y)
        assert_almost_equal(res[4], 2.3957814497838803e-3) #4.3609875083149268e-3)

    def test_regress_simple_onearg_rows(self):
        """Regress a line with sinusoidal noise, with a single input of shape
        (2, N).
        """
        x = np.linspace(0, 100, 100)
        y = 0.2 * np.linspace(0, 100, 100) + 10
        y += np.sin(np.linspace(0, 20, 100))
        rows = np.vstack((x, y))

        res = stats.linregress(rows)
        assert_almost_equal(res[4], 2.3957814497838803e-3) #4.3609875083149268e-3)

    def test_regress_simple_onearg_cols(self):
        """Regress a line with sinusoidal noise, with a single input of shape
        (N, 2).
        """
        x = np.linspace(0, 100, 100)
        y = 0.2 * np.linspace(0, 100, 100) + 10
        y += np.sin(np.linspace(0, 20, 100))
        cols = np.hstack((np.expand_dims(x, 1), np.expand_dims(y, 1)))

        res = stats.linregress(cols)
        assert_almost_equal(res[4], 2.3957814497838803e-3) #4.3609875083149268e-3)

    def test_regress_shape_error(self):
        """Check that a single input argument to linregress with wrong shape
        results in a ValueError."""
        assert_raises(ValueError, stats.linregress, np.ones((3, 3)))

    def test_linregress(self):
        '''compared with multivariate ols with pinv'''
        x = np.arange(11)
        y = np.arange(5,16)
        y[[(1),(-2)]] -= 1
        y[[(0),(-1)]] += 1

        res = (1.0, 5.0, 0.98229948625750, 7.45259691e-008, 0.063564172616372733)
        assert_array_almost_equal(stats.linregress(x,y),res,decimal=14)

class TestHistogram(TestCase):
    """ Tests that histogram works as it should, and keeps old behaviour
    """
    # what is untested:
    # - multidimensional arrays (since 'a' is ravel'd as the first line in the method)
    # - very large arrays
    # - Nans, Infs, empty and otherwise bad inputs

    # sample arrays to test the histogram with
    low_values = np.array([0.2, 0.3, 0.4, 0.5, 0.5, 0.6, 0.7, 0.8, 0.9, 1.1, 1.2],
                          dtype=float) # 11 values
    high_range = np.array([2, 3, 4, 2, 21, 32, 78, 95, 65, 66, 66, 66, 66, 4],
                          dtype=float) # 14 values
    low_range = np.array([2, 3, 3, 2, 3, 2.4, 2.1, 3.1, 2.9, 2.6, 2.7, 2.8, 2.2, 2.001],
                         dtype=float) # 14 values
    few_values = np.array([2.0, 3.0, -1.0, 0.0], dtype=float) # 4 values

    def test_simple(self):
        """ Tests that each of the tests works as expected with default params
        """
        # basic tests, with expected results (no weighting)
        # results taken from the previous (slower) version of histogram
        basic_tests = ((self.low_values, (np.array([ 1.,  1.,  1.,  2.,  2.,
                                                     1.,  1.,  0.,  1.,  1.]),
                                          0.14444444444444446, 0.11111111111111112, 0)),
                       (self.high_range, (np.array([ 5.,  0.,  1.,  1.,  0.,
                                                     0.,  5.,  1.,  0.,  1.]),
                                          -3.1666666666666661, 10.333333333333332, 0)),
                       (self.low_range, (np.array([ 3.,  1.,  1.,  1.,  0.,  1.,
                                                    1.,  2.,  3.,  1.]),
                                         1.9388888888888889, 0.12222222222222223, 0)),
                       (self.few_values, (np.array([ 1.,  0.,  1.,  0.,  0.,  0.,
                                                     0.,  1.,  0.,  1.]),
                                          -1.2222222222222223, 0.44444444444444448, 0)),
                       )
        for inputs, expected_results in basic_tests:
            given_results = stats.histogram(inputs)
            assert_array_almost_equal(expected_results[0], given_results[0],
                                      decimal=2)
            for i in range(1, 4):
                assert_almost_equal(expected_results[i], given_results[i],
                                    decimal=2)

    def test_weighting(self):
        """ Tests that weights give expected histograms
        """
        # basic tests, with expected results, given a set of weights
        # weights used (first n are used for each test, where n is len of array) (14 values)
        weights = np.array([1., 3., 4.5, 0.1, -1.0, 0.0, 0.3, 7.0, 103.2, 2, 40, 0, 0, 1])
        # results taken from the numpy version of histogram
        basic_tests = ((self.low_values, (np.array([  4.0,  0.0,  4.5,  -0.9,  0.0,
                                                      0.3,110.2,  0.0,  0.0,  42.0]),
                                          0.2, 0.1, 0)),
                       (self.high_range, (np.array([  9.6,  0. ,  -1. ,  0. ,  0. ,
                                                      0. ,145.2,   0. ,  0.3,  7. ]),
                                          2.0, 9.3, 0)),
                       (self.low_range, (np.array([ 2.4,  0. ,  0. ,   0. ,  0. ,
                                                    2. , 40. ,  0. , 103.2, 13.5]),
                                         2.0, 0.11, 0)),
                       (self.few_values, (np.array([ 4.5,  0. ,  0.1,  0. ,  0. ,  0. ,
                                                     0. ,  1. ,  0. ,  3. ]),
                                          -1., 0.4, 0)),

                       )
        for inputs, expected_results in basic_tests:
            # use the first lot of weights for test
            # default limits given to reproduce output of numpy's test better
            given_results = stats.histogram(inputs, defaultlimits=(inputs.min(),
                                                                   inputs.max()),
                                            weights=weights[:len(inputs)])
            assert_array_almost_equal(expected_results[0], given_results[0],
                                      decimal=2)
            for i in range(1, 4):
                assert_almost_equal(expected_results[i], given_results[i],
                                    decimal=2)

    def test_reduced_bins(self):
        """ Tests that reducing the number of bins produces expected results
        """
        # basic tests, with expected results (no weighting),
        # except number of bins is halved to 5
        # results taken from the previous (slower) version of histogram
        basic_tests = ((self.low_values, (np.array([ 2.,  3.,  3.,  1.,  2.]),
                                          0.075000000000000011, 0.25, 0)),
                       (self.high_range, (np.array([ 5.,  2.,  0.,  6.,  1.]),
                                          -9.625, 23.25, 0)),
                       (self.low_range, (np.array([ 4.,  2.,  1.,  3.,  4.]),
                                         1.8625, 0.27500000000000002, 0)),
                       (self.few_values, (np.array([ 1.,  1.,  0.,  1.,  1.]),
                                          -1.5, 1.0, 0)),
                       )
        for inputs, expected_results in basic_tests:
            given_results = stats.histogram(inputs, numbins=5)
            assert_array_almost_equal(expected_results[0], given_results[0],
                                      decimal=2)
            for i in range(1, 4):
                assert_almost_equal(expected_results[i], given_results[i],
                                    decimal=2)

    def test_increased_bins(self):
        """ Tests that increasing the number of bins produces expected results
        """
        # basic tests, with expected results (no weighting),
        # except number of bins is double to 20
        # results taken from the previous (slower) version of histogram
        basic_tests = ((self.low_values, (np.array([ 1.,  0.,  1.,  0.,  1.,
                                                     0.,  2.,  0.,  1.,  0.,
                                                     1.,  1.,  0.,  1.,  0.,
                                                     0.,  0.,  1.,  0.,  1.]),
                                          0.1736842105263158, 0.052631578947368418, 0)),
                       (self.high_range, (np.array([ 5.,  0.,  0.,  0.,  1.,
                                                     0.,  1.,  0.,  0.,  0.,
                                                     0.,  0.,  0.,  5.,  0.,
                                                     0.,  1.,  0.,  0.,  1.]),
                                          -0.44736842105263142, 4.8947368421052628, 0)),
                       (self.low_range, (np.array([ 3.,  0.,  1.,  1.,  0.,  0.,
                                                    0.,  1.,  0.,  0.,  1.,  0.,
                                                    1., 0.,  1.,  0.,  1.,  3.,
                                                    0.,  1.]),
                                         1.9710526315789474, 0.057894736842105263, 0)),
                       (self.few_values, (np.array([ 1.,  0.,  0.,  0.,  0.,  1.,
                                                     0.,  0.,  0.,  0.,  0.,  0.,
                                                     0.,  0.,  1.,  0.,  0.,  0.,
                                                     0.,  1.]),
                                          -1.1052631578947367, 0.21052631578947367, 0)),
                       )
        for inputs, expected_results in basic_tests:
            given_results = stats.histogram(inputs, numbins=20)
            assert_array_almost_equal(expected_results[0], given_results[0],
                                      decimal=2)
            for i in range(1, 4):
                assert_almost_equal(expected_results[i], given_results[i],
                                    decimal=2)


def test_cumfreq():
    x = [1, 4, 2, 1, 3, 1]
    cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4)
    assert_array_almost_equal(cumfreqs, np.array([ 3.,  4.,  5.,  6.]))
    cumfreqs, lowlim, binsize, extrapoints = stats.cumfreq(x, numbins=4,
                                                      defaultreallimits=(1.5, 5))
    assert_(extrapoints==3)


def test_relfreq():
    a = np.array([1, 4, 2, 1, 3, 1])
    relfreqs, lowlim, binsize, extrapoints = stats.relfreq(a, numbins=4)
    assert_array_almost_equal(relfreqs, array([0.5, 0.16666667, 0.16666667, 0.16666667]))

    # check array_like input is accepted
    relfreqs2, lowlim, binsize, extrapoints = stats.relfreq([1, 4, 2, 1, 3, 1], numbins=4)
    assert_array_almost_equal(relfreqs, relfreqs2)


# Utility

def compare_results(res,desired):
    for i in range(len(desired)):
        assert_array_equal(res[i],desired[i])


##################################################
### Test for sum

class TestGMean(TestCase):

    def test_1D_list(self):
        a = (1,2,3,4)
        actual= stats.gmean(a)
        desired = power(1*2*3*4,1./4.)
        assert_almost_equal(actual, desired,decimal=14)

        desired1 = stats.gmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)

    def test_1D_array(self):
        a = array((1,2,3,4), float32)
        actual= stats.gmean(a)
        desired = power(1*2*3*4,1./4.)
        assert_almost_equal(actual, desired, decimal=7)

        desired1 = stats.gmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=7)

    def test_2D_array_default(self):
        a = array(((1,2,3,4),
                   (1,2,3,4),
                   (1,2,3,4)))
        actual= stats.gmean(a)
        desired = array((1,2,3,4))
        assert_array_almost_equal(actual, desired, decimal=14)

        desired1 = stats.gmean(a,axis=0)
        assert_array_almost_equal(actual, desired1, decimal=14)

    def test_2D_array_dim1(self):
        a = array(((1,2,3,4),
                   (1,2,3,4),
                   (1,2,3,4)))
        actual= stats.gmean(a, axis=1)
        v = power(1*2*3*4,1./4.)
        desired = array((v,v,v))
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_large_values(self):
        a = array([1e100, 1e200, 1e300])
        actual = stats.gmean(a)
        assert_approx_equal(actual, 1e200, significant=14)

class TestHMean(TestCase):
    def test_1D_list(self):
        a = (1,2,3,4)
        actual= stats.hmean(a)
        desired =  4. / (1./1 + 1./2 + 1./3 + 1./4)
        assert_almost_equal(actual, desired, decimal=14)

        desired1 = stats.hmean(array(a),axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)
    def test_1D_array(self):
        a = array((1,2,3,4), float64)
        actual= stats.hmean(a)
        desired =  4. / (1./1 + 1./2 + 1./3 + 1./4)
        assert_almost_equal(actual, desired, decimal=14)

        desired1 = stats.hmean(a,axis=-1)
        assert_almost_equal(actual, desired1, decimal=14)

    def test_2D_array_default(self):
        a = array(((1,2,3,4),
                   (1,2,3,4),
                   (1,2,3,4)))
        actual = stats.hmean(a)
        desired = array((1.,2.,3.,4.))
        assert_array_almost_equal(actual, desired, decimal=14)

        actual1 = stats.hmean(a,axis=0)
        assert_array_almost_equal(actual1, desired, decimal=14)

    def test_2D_array_dim1(self):
        a = array(((1,2,3,4),
                   (1,2,3,4),
                   (1,2,3,4)))

        v = 4. / (1./1 + 1./2 + 1./3 + 1./4)
        desired1 = array((v,v,v))
        actual1 = stats.hmean(a, axis=1)
        assert_array_almost_equal(actual1, desired1, decimal=14)


class TestPercentile(TestCase):
    def setUp(self):
        self.a1 = [3,4,5,10,-3,-5,6]
        self.a2 = [3,-6,-2,8,7,4,2,1]
        self.a3 = [3.,4,5,10,-3,-5,-6,7.0]

    def test_percentile(self):
        x = arange(8) * 0.5
        assert_equal(stats.scoreatpercentile(x, 0), 0.)
        assert_equal(stats.scoreatpercentile(x, 100), 3.5)
        assert_equal(stats.scoreatpercentile(x, 50), 1.75)

    def test_2D(self):
        x = array([[1, 1, 1],
                   [1, 1, 1],
                   [4, 4, 3],
                   [1, 1, 1],
                   [1, 1, 1]])
        assert_array_equal(stats.scoreatpercentile(x,50),
                           [1,1,1])


class TestCMedian(TestCase):
    def test_basic(self):
        data = [1,2,3,1,5,3,6,4,3,2,4,3,5,2.0]
        assert_almost_equal(stats.cmedian(data,5),3.2916666666666665)
        assert_almost_equal(stats.cmedian(data,3),3.083333333333333)
        assert_almost_equal(stats.cmedian(data),3.0020020020020022)


class TestMode(TestCase):
    def test_basic(self):
        data1 = [3,5,1,10,23,3,2,6,8,6,10,6]
        vals = stats.mode(data1)
        assert_almost_equal(vals[0][0],6)
        assert_almost_equal(vals[1][0],3)


class TestVariability(TestCase):

    testcase = [1,2,3,4]

    def test_signaltonoise(self):
        """
        this is not in R, so used
        mean(testcase,axis=0)/(sqrt(var(testcase)*3/4)) """
        #y = stats.signaltonoise(self.shoes[0])
        #assert_approx_equal(y,4.5709967)
        y = stats.signaltonoise(self.testcase)
        assert_approx_equal(y,2.236067977)

    def test_sem(self):
        """
        this is not in R, so used
        sqrt(var(testcase)*3/4)/sqrt(3)
        """
        #y = stats.sem(self.shoes[0])
        #assert_approx_equal(y,0.775177399)
        y = stats.sem(self.testcase)
        assert_approx_equal(y,0.6454972244)

    def test_zmap(self):
        """
        not in R, so tested by using
        (testcase[i]-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
        """
        y = stats.zmap(self.testcase,self.testcase)
        desired = ([-1.3416407864999, -0.44721359549996 , 0.44721359549996 , 1.3416407864999])
        assert_array_almost_equal(desired,y,decimal=12)

    def test_zmap_axis(self):
        """Test use of 'axis' keyword in zmap."""        
        x = np.array([[0.0, 0.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 2.0],
                      [2.0, 0.0, 2.0, 0.0]])

        t1 = 1.0/np.sqrt(2.0/3)
        t2 = np.sqrt(3.)/3
        t3 = np.sqrt(2.)

        z0 = stats.zmap(x, x, axis=0)
        z1 = stats.zmap(x, x, axis=1)

        z0_expected = [[-t1, -t3/2, -t3/2, 0.0],
                       [0.0,  t3,   -t3/2,  t1],
                       [t1,  -t3/2,  t3,   -t1]]
        z1_expected = [[-1.0, -1.0, 1.0, 1.0],
                       [-t2, -t2, -t2, np.sqrt(3.)],
                       [1.0, -1.0, 1.0, -1.0]]

        assert_array_almost_equal(z0, z0_expected)
        assert_array_almost_equal(z1, z1_expected)        

    def test_zmap_ddof(self):
        """Test use of 'ddof' keyword in zmap."""
        x = np.array([[0.0, 0.0, 1.0, 1.0],
                      [0.0, 1.0, 2.0, 3.0]])

        t1 = 1.0/np.sqrt(2.0/3)
        t2 = np.sqrt(3.)/3
        t3 = np.sqrt(2.)

        z = stats.zmap(x, x, axis=1, ddof=1)

        z0_expected = np.array([-0.5, -0.5, 0.5, 0.5])/(1.0/np.sqrt(3))
        z1_expected = np.array([-1.5, -0.5, 0.5, 1.5])/(np.sqrt(5./3))
        assert_array_almost_equal(z[0], z0_expected)
        assert_array_almost_equal(z[1], z1_expected)

    def test_zscore(self):
        """
        not in R, so tested by using
        (testcase[i]-mean(testcase,axis=0))/sqrt(var(testcase)*3/4)
        """
        y = stats.zscore(self.testcase)
        desired = ([-1.3416407864999, -0.44721359549996 , 0.44721359549996 , 1.3416407864999])
        assert_array_almost_equal(desired,y,decimal=12)

    def test_zscore_axis(self):
        """Test use of 'axis' keyword in zscore."""
        x = np.array([[0.0, 0.0, 1.0, 1.0],
                      [1.0, 1.0, 1.0, 2.0],
                      [2.0, 0.0, 2.0, 0.0]])

        t1 = 1.0/np.sqrt(2.0/3)
        t2 = np.sqrt(3.)/3
        t3 = np.sqrt(2.)

        z0 = stats.zscore(x, axis=0)
        z1 = stats.zscore(x, axis=1)

        z0_expected = [[-t1, -t3/2, -t3/2, 0.0],
                       [0.0,  t3,   -t3/2,  t1],
                       [t1,  -t3/2,  t3,   -t1]]
        z1_expected = [[-1.0, -1.0, 1.0, 1.0],
                       [-t2, -t2, -t2, np.sqrt(3.)],
                       [1.0, -1.0, 1.0, -1.0]]

        assert_array_almost_equal(z0, z0_expected)
        assert_array_almost_equal(z1, z1_expected)

    def test_zscore_ddof(self):
        """Test use of 'ddof' keyword in zscore."""
        x = np.array([[0.0, 0.0, 1.0, 1.0],
                      [0.0, 1.0, 2.0, 3.0]])

        t1 = 1.0/np.sqrt(2.0/3)
        t2 = np.sqrt(3.)/3
        t3 = np.sqrt(2.)

        z = stats.zscore(x, axis=1, ddof=1)

        z0_expected = np.array([-0.5, -0.5, 0.5, 0.5])/(1.0/np.sqrt(3))
        z1_expected = np.array([-1.5, -0.5, 0.5, 1.5])/(np.sqrt(5./3))
        assert_array_almost_equal(z[0], z0_expected)
        assert_array_almost_equal(z[1], z1_expected)


class TestMoments(TestCase):
    """
        Comparison numbers are found using R v.1.5.1
        note that length(testcase) = 4
        testmathworks comes from documentation for the
        Statistics Toolbox for Matlab and can be found at both
        http://www.mathworks.com/access/helpdesk/help/toolbox/stats/kurtosis.shtml
        http://www.mathworks.com/access/helpdesk/help/toolbox/stats/skewness.shtml
        Note that both test cases came from here.
    """
    testcase = [1,2,3,4]
    testmathworks = [1.165 , 0.6268, 0.0751, 0.3516, -0.6965]
    def test_moment(self):
        """
        mean((testcase-mean(testcase))**power,axis=0),axis=0))**power))"""
        y = stats.moment(self.testcase,1)
        assert_approx_equal(y,0.0,10)
        y = stats.moment(self.testcase,2)
        assert_approx_equal(y,1.25)
        y = stats.moment(self.testcase,3)
        assert_approx_equal(y,0.0)
        y = stats.moment(self.testcase,4)
        assert_approx_equal(y,2.5625)
    def test_variation(self):
        """
        variation = samplestd/mean """
##        y = stats.variation(self.shoes[0])
##        assert_approx_equal(y,21.8770668)
        y = stats.variation(self.testcase)
        assert_approx_equal(y,0.44721359549996, 10)

    def test_skewness(self):
        """
        sum((testmathworks-mean(testmathworks,axis=0))**3,axis=0)/
            ((sqrt(var(testmathworks)*4/5))**3)/5
        """
        y = stats.skew(self.testmathworks)
        assert_approx_equal(y,-0.29322304336607,10)
        y = stats.skew(self.testmathworks,bias=0)
        assert_approx_equal(y,-0.437111105023940,10)
        y = stats.skew(self.testcase)
        assert_approx_equal(y,0.0,10)

    def test_skewness_scalar(self):
        """
        `skew` must return a scalar for 1-dim input
        """
        assert_equal(stats.skew(arange(10)), 0.0)

    def test_kurtosis(self):
        """
            sum((testcase-mean(testcase,axis=0))**4,axis=0)/((sqrt(var(testcase)*3/4))**4)/4
            sum((test2-mean(testmathworks,axis=0))**4,axis=0)/((sqrt(var(testmathworks)*4/5))**4)/5
            Set flags for axis = 0 and
            fisher=0 (Pearson's defn of kurtosis for compatiability with Matlab)
        """
        y = stats.kurtosis(self.testmathworks,0,fisher=0,bias=1)
        assert_approx_equal(y, 2.1658856802973,10)

        # Note that MATLAB has confusing docs for the following case
        #  kurtosis(x,0) gives an unbiased estimate of Pearson's skewness
        #  kurtosis(x)  gives a biased estimate of Fisher's skewness (Pearson-3)
        #  The MATLAB docs imply that both should give Fisher's
        y = stats.kurtosis(self.testmathworks,fisher=0,bias=0)
        assert_approx_equal(y, 3.663542721189047,10)
        y = stats.kurtosis(self.testcase,0,0)
        assert_approx_equal(y,1.64)

    def test_kurtosis_array_scalar(self):
        assert_equal(type(stats.kurtosis([1,2,3])), float)

class TestThreshold(TestCase):
    def test_basic(self):
        a = [-1,2,3,4,5,-1,-2]
        assert_array_equal(stats.threshold(a),a)
        assert_array_equal(stats.threshold(a,3,None,0),
                           [0,0,3,4,5,0,0])
        assert_array_equal(stats.threshold(a,None,3,0),
                           [-1,2,3,0,0,-1,-2])
        assert_array_equal(stats.threshold(a,2,4,0),
                           [0,2,3,4,0,0,0])

# Hypothesis test tests
class TestStudentTest(TestCase):
    X1 = np.array([-1, 0, 1])
    X2 = np.array([0, 1, 2])
    T1_0 = 0
    P1_0 = 1
    T1_1 = -1.732051
    P1_1 = 0.2254033
    T1_2 = -3.464102
    P1_2 =  0.0741799
    T2_0 = 1.732051
    P2_0 = 0.2254033
    def test_onesample(self):
        t, p = stats.ttest_1samp(self.X1, 0)

        assert_array_almost_equal(t, self.T1_0)
        assert_array_almost_equal(p, self.P1_0)

        t, p = stats.ttest_1samp(self.X2, 0)

        assert_array_almost_equal(t, self.T2_0)
        assert_array_almost_equal(p, self.P2_0)

        t, p = stats.ttest_1samp(self.X1, 1)

        assert_array_almost_equal(t, self.T1_1)
        assert_array_almost_equal(p, self.P1_1)

        t, p = stats.ttest_1samp(self.X1, 2)

        assert_array_almost_equal(t, self.T1_2)
        assert_array_almost_equal(p, self.P1_2)

def test_scoreatpercentile():
    assert_equal(stats.scoreatpercentile(range(10), 50), 4.5)
    assert_equal(stats.scoreatpercentile(range(10), 50, (2,7)), 4.5)
    assert_equal(stats.scoreatpercentile(range(100), 50, (1,8)), 4.5)

    assert_equal(stats.scoreatpercentile(np.array([1, 10 ,100]),
                                         50, (10,100)),
                 55)
    assert_equal(stats.scoreatpercentile(np.array([1, 10 ,100]),
                                         50, (1,10)),
                 5.5)

def test_percentileofscore():
    pcos = stats.percentileofscore

    assert_equal(pcos([1,2,3,4,5,6,7,8,9,10],4), 40.0)

    for (kind, result) in [('mean', 35.0),
                           ('strict', 30.0),
                           ('weak', 40.0)]:
        yield assert_equal, pcos(np.arange(10) + 1,
                                                    4, kind=kind), \
                                                    result

    # multiple - 2
    for (kind, result) in [('rank', 45.0),
                           ('strict', 30.0),
                           ('weak', 50.0),
                           ('mean', 40.0)]:
        yield assert_equal, pcos([1,2,3,4,4,5,6,7,8,9],
                                                    4, kind=kind), \
                                                    result

    # multiple - 3
    assert_equal(pcos([1,2,3,4,4,4,5,6,7,8], 4), 50.0)
    for (kind, result) in [('rank', 50.0),
                           ('mean', 45.0),
                           ('strict', 30.0),
                           ('weak', 60.0)]:

        yield assert_equal, pcos([1,2,3,4,4,4,5,6,7,8],
                                                    4, kind=kind), \
                                                    result

    # missing
    for kind in ('rank', 'mean', 'strict', 'weak'):
        yield assert_equal, pcos([1,2,3,5,6,7,8,9,10,11],
                                                    4, kind=kind), \
                                                    30

    #larger numbers
    for (kind, result) in [('mean', 35.0),
                           ('strict', 30.0),
                           ('weak', 40.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], 40,
                   kind=kind), result

    for (kind, result) in [('mean', 45.0),
                           ('strict', 30.0),
                           ('weak', 60.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 40, 40, 40, 50, 60, 70, 80],
                   40, kind=kind), result


    for kind in ('rank', 'mean', 'strict', 'weak'):
        yield assert_equal, \
              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
                   40, kind=kind), 30.0

    #boundaries
    for (kind, result) in [('rank', 10.0),
                           ('mean', 5.0),
                           ('strict', 0.0),
                           ('weak', 10.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
                   10, kind=kind), result

    for (kind, result) in [('rank', 100.0),
                           ('mean', 95.0),
                           ('strict', 90.0),
                           ('weak', 100.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
                   110, kind=kind), result

    #out of bounds
    for (kind, score, result) in [('rank', 200, 100.0),
                                  ('mean', 200, 100.0),
                                  ('mean', 0, 0.0)]:
        yield assert_equal, \
              pcos([10, 20, 30, 50, 60, 70, 80, 90, 100, 110],
                   score, kind=kind), result


def test_friedmanchisquare():
    # see ticket:113
    # verified with matlab and R
    #From Demsar "Statistical Comparisons of Classifiers over Multiple Data Sets"
    #2006, Xf=9.28 (no tie handling, tie corrected Xf >=9.28)
    x1 = [array([0.763, 0.599, 0.954, 0.628, 0.882, 0.936, 0.661, 0.583,
                 0.775, 1.0, 0.94, 0.619, 0.972, 0.957]),
          array([0.768, 0.591, 0.971, 0.661, 0.888, 0.931, 0.668, 0.583,
                 0.838, 1.0, 0.962, 0.666, 0.981, 0.978]),
          array([0.771, 0.590, 0.968, 0.654, 0.886, 0.916, 0.609, 0.563,
                 0.866, 1.0, 0.965, 0.614, 0.9751, 0.946]),
          array([0.798, 0.569, 0.967, 0.657, 0.898, 0.931, 0.685, 0.625,
                 0.875, 1.0, 0.962, 0.669, 0.975, 0.970])]

    #From "Bioestadistica para las ciencias de la salud" Xf=18.95 p<0.001:
    x2 = [array([4,3,5,3,5,3,2,5,4,4,4,3]),
          array([2,2,1,2,3,1,2,3,2,1,1,3]),
          array([2,4,3,3,4,3,3,4,4,1,2,1]),
          array([3,5,4,3,4,4,3,3,3,4,4,4])]

    #From Jerrorl H. Zar, "Biostatistical Analysis"(example 12.6), Xf=10.68, 0.005 < p < 0.01:
    #Probability from this example is inexact using Chisquare aproximation of Friedman Chisquare.
    x3 = [array([7.0,9.9,8.5,5.1,10.3]),
          array([5.3,5.7,4.7,3.5,7.7]),
          array([4.9,7.6,5.5,2.8,8.4]),
          array([8.8,8.9,8.1,3.3,9.1])]


    assert_array_almost_equal(stats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]),(10.2283464566929, 0.0167215803284414))
    assert_array_almost_equal(stats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]),(18.9428571428571, 0.000280938375189499))
    assert_array_almost_equal(stats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]),(10.68, 0.0135882729582176))
    np.testing.assert_raises(ValueError, stats.friedmanchisquare,x3[0],x3[1])

    # test using mstats
    assert_array_almost_equal(stats.mstats.friedmanchisquare(x1[0],x1[1],x1[2],x1[3]),(10.2283464566929, 0.0167215803284414))
    # the following fails
    #assert_array_almost_equal(stats.mstats.friedmanchisquare(x2[0],x2[1],x2[2],x2[3]),(18.9428571428571, 0.000280938375189499))
    assert_array_almost_equal(stats.mstats.friedmanchisquare(x3[0],x3[1],x3[2],x3[3]),(10.68, 0.0135882729582176))
    np.testing.assert_raises(ValueError,stats.mstats.friedmanchisquare,x3[0],x3[1])

def test_kstest():
    #from numpy.testing import assert_almost_equal

    # comparing with values from R
    x = np.linspace(-1,1,9)
    D,p = stats.kstest(x,'norm')
    assert_almost_equal( D, 0.15865525393145705, 12)
    assert_almost_equal( p, 0.95164069201518386, 1)

    x = np.linspace(-15,15,9)
    D,p = stats.kstest(x,'norm')
    assert_almost_equal( D, 0.44435602715924361, 15)
    assert_almost_equal( p, 0.038850140086788665, 8)

    # the following tests rely on deterministicaly replicated rvs
    np.random.seed(987654321)
    x = stats.norm.rvs(loc=0.2, size=100)
    D,p = stats.kstest(x, 'norm', mode='asymp')
    assert_almost_equal( D, 0.12464329735846891, 15)
    assert_almost_equal( p, 0.089444888711820769, 15)
    assert_almost_equal( np.array(stats.kstest(x, 'norm', mode='asymp')),
                np.array((0.12464329735846891, 0.089444888711820769)), 15)
    assert_almost_equal( np.array(stats.kstest(x,'norm', alternative = 'less')),
                np.array((0.12464329735846891, 0.040989164077641749)), 15)
    # this 'greater' test fails with precision of decimal=14
    assert_almost_equal( np.array(stats.kstest(x,'norm', alternative = 'greater')),
                np.array((0.0072115233216310994, 0.98531158590396228)), 12)

    #missing: no test that uses *args


def test_ks_2samp():
    #exact small sample solution
    data1 = np.array([1.0,2.0])
    data2 = np.array([1.0,2.0,3.0])
    assert_almost_equal(np.array(stats.ks_2samp(data1+0.01,data2)),
                np.array((0.33333333333333337, 0.99062316386915694)))
    assert_almost_equal(np.array(stats.ks_2samp(data1-0.01,data2)),
                np.array((0.66666666666666674, 0.42490954988801982)))
    #these can also be verified graphically
    assert_almost_equal(
        np.array(stats.ks_2samp(np.linspace(1,100,100),
                              np.linspace(1,100,100)+2+0.1)),
        np.array((0.030000000000000027, 0.99999999996005062)))
    assert_almost_equal(
        np.array(stats.ks_2samp(np.linspace(1,100,100),
                              np.linspace(1,100,100)+2-0.1)),
        np.array((0.020000000000000018, 0.99999999999999933)))
    #these are just regression tests
    assert_almost_equal(
        np.array(stats.ks_2samp(np.linspace(1,100,100),
                              np.linspace(1,100,110)+20.1)),
        np.array((0.21090909090909091, 0.015880386730710221)))
    assert_almost_equal(
        np.array(stats.ks_2samp(np.linspace(1,100,100),
                              np.linspace(1,100,110)+20-0.1)),
        np.array((0.20818181818181825, 0.017981441789762638)))

def test_ttest_rel():
    #regression test
    tr,pr = 0.81248591389165692, 0.41846234511362157
    tpr = ([tr,-tr],[pr,pr])

    rvs1 = np.linspace(1,100,100)
    rvs2 = np.linspace(1.01,99.989,100)
    rvs1_2D = np.array([np.linspace(1,100,100), np.linspace(1.01,99.989,100)])
    rvs2_2D = np.array([np.linspace(1.01,99.989,100), np.linspace(1,100,100)])

    t,p = stats.ttest_rel(rvs1, rvs2, axis=0)
    assert_array_almost_equal([t,p],(tr,pr))
    t,p = stats.ttest_rel(rvs1_2D.T, rvs2_2D.T, axis=0)
    assert_array_almost_equal([t,p],tpr)
    t,p = stats.ttest_rel(rvs1_2D, rvs2_2D, axis=1)
    assert_array_almost_equal([t,p],tpr)

    #test on 3 dimensions
    rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D])
    rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D])
    t,p = stats.ttest_rel(rvs1_3D, rvs2_3D, axis=1)
    assert_array_almost_equal(np.abs(t), tr)
    assert_array_almost_equal(np.abs(p), pr)
    assert_equal(t.shape, (2, 3))

    t,p = stats.ttest_rel(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2)
    assert_array_almost_equal(np.abs(t), tr)
    assert_array_almost_equal(np.abs(p), pr)
    assert_equal(t.shape, (3, 2))

    olderr = np.seterr(all='ignore')
    try:
        #test zero division problem
        t,p = stats.ttest_rel([0,0,0],[1,1,1])
        assert_equal((np.abs(t),p), (np.inf, 0))
        assert_almost_equal(stats.ttest_rel([0,0,0], [0,0,0]), (1.0, 0.42264973081037421))

        #check that nan in input array result in nan output
        anan = np.array([[1,np.nan],[-1,1]])
        assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan]))
    finally:
        np.seterr(**olderr)


def test_ttest_ind():
    #regression test
    tr = 1.0912746897927283
    pr = 0.27647818616351882
    tpr = ([tr,-tr],[pr,pr])

    rvs2 = np.linspace(1,100,100)
    rvs1 = np.linspace(5,105,100)
    rvs1_2D = np.array([rvs1, rvs2])
    rvs2_2D = np.array([rvs2, rvs1])

    t,p = stats.ttest_ind(rvs1, rvs2, axis=0)
    assert_array_almost_equal([t,p],(tr,pr))
    t,p = stats.ttest_ind(rvs1_2D.T, rvs2_2D.T, axis=0)
    assert_array_almost_equal([t,p],tpr)
    t,p = stats.ttest_ind(rvs1_2D, rvs2_2D, axis=1)
    assert_array_almost_equal([t,p],tpr)

    #test on 3 dimensions
    rvs1_3D = np.dstack([rvs1_2D,rvs1_2D,rvs1_2D])
    rvs2_3D = np.dstack([rvs2_2D,rvs2_2D,rvs2_2D])
    t,p = stats.ttest_ind(rvs1_3D, rvs2_3D, axis=1)
    assert_almost_equal(np.abs(t), np.abs(tr))
    assert_array_almost_equal(np.abs(p), pr)
    assert_equal(t.shape, (2, 3))

    t,p = stats.ttest_ind(np.rollaxis(rvs1_3D,2), np.rollaxis(rvs2_3D,2), axis=2)
    assert_array_almost_equal(np.abs(t), np.abs(tr))
    assert_array_almost_equal(np.abs(p), pr)
    assert_equal(t.shape, (3, 2))

    olderr = np.seterr(all='ignore')
    try:
        #test zero division problem
        t,p = stats.ttest_ind([0,0,0],[1,1,1])
        assert_equal((np.abs(t),p), (np.inf, 0))
        assert_almost_equal(stats.ttest_ind([0,0,0], [0,0,0]), (1.0, 0.37390096630005898))

        #check that nan in input array result in nan output
        anan = np.array([[1,np.nan],[-1,1]])
        assert_equal(stats.ttest_ind(anan, np.zeros((2,2))),([0, np.nan], [1,np.nan]))
    finally:
        np.seterr(**olderr)


def test_ttest_1samp_new():
    n1, n2, n3 = (10,15,20)
    rvn1 = stats.norm.rvs(loc=5,scale=10,size=(n1,n2,n3))

    #check multidimensional array and correct axis handling
    #deterministic rvn1 and rvn2 would be better as in test_ttest_rel
    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n2,n3)),axis=0)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=0)
    t3,p3 = stats.ttest_1samp(rvn1[:,0,0], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n2,n3))

    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n3)),axis=1)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=1)
    t3,p3 = stats.ttest_1samp(rvn1[0,:,0], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n1,n3))

    t1,p1 = stats.ttest_1samp(rvn1[:,:,:], np.ones((n1,n2)),axis=2)
    t2,p2 = stats.ttest_1samp(rvn1[:,:,:], 1,axis=2)
    t3,p3 = stats.ttest_1samp(rvn1[0,0,:], 1)
    assert_array_almost_equal(t1,t2, decimal=14)
    assert_almost_equal(t1[0,0],t3, decimal=14)
    assert_equal(t1.shape, (n1,n2))

    olderr = np.seterr(all='ignore')
    try:
        #test zero division problem
        t,p = stats.ttest_1samp([0,0,0], 1)
        assert_equal((np.abs(t),p), (np.inf, 0))
        assert_almost_equal(stats.ttest_1samp([0,0,0], 0), (1.0, 0.42264973081037421))

        #check that nan in input array result in nan output
        anan = np.array([[1,np.nan],[-1,1]])
        assert_equal(stats.ttest_1samp(anan, 0),([0, np.nan], [1,np.nan]))
    finally:
        np.seterr(**olderr)


def test_describe():
    x = np.vstack((np.ones((3,4)),2*np.ones((2,4))))
    nc, mmc = (5, ([ 1.,  1.,  1.,  1.], [ 2.,  2.,  2.,  2.]))
    mc = np.array([ 1.4,  1.4,  1.4,  1.4])
    vc = np.array([ 0.3,  0.3,  0.3,  0.3])
    skc = [0.40824829046386357]*4
    kurtc = [-1.833333333333333]*4
    n, mm, m, v, sk, kurt = stats.describe(x)
    assert_equal(n, nc)
    assert_equal(mm, mmc)
    assert_equal(m, mc)
    assert_equal(v, vc)
    assert_array_almost_equal(sk, skc, decimal=13) #not sure about precision
    assert_array_almost_equal(kurt, kurtc, decimal=13)
    n, mm, m, v, sk, kurt = stats.describe(x.T, axis=1)
    assert_equal(n, nc)
    assert_equal(mm, mmc)
    assert_equal(m, mc)
    assert_equal(v, vc)
    assert_array_almost_equal(sk, skc, decimal=13) #not sure about precision
    assert_array_almost_equal(kurt, kurtc, decimal=13)

def test_normalitytests():
    # numbers verified with R: dagoTest in package fBasics
    st_normal, st_skew, st_kurt = (3.92371918, 1.98078826, -0.01403734)
    pv_normal, pv_skew, pv_kurt = (0.14059673, 0.04761502,  0.98880019)
    x = np.array((-2,-1,0,1,2,3)*4)**2
    yield assert_array_almost_equal, stats.normaltest(x), (st_normal, pv_normal)
    yield assert_array_almost_equal, stats.skewtest(x), (st_skew, pv_skew)
    yield assert_array_almost_equal, stats.kurtosistest(x), (st_kurt, pv_kurt)

def test_skewtest_too_few_samples():
    """Regression test for ticket #1492.

    skewtest requires at least 8 samples; 7 should raise a ValueError.
    """
    x = np.arange(7.0)
    assert_raises(ValueError, stats.skewtest, x)

def mannwhitneyu():
    x = np.array([ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 2., 1., 1.,
        2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 3., 1., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 1.])

    y = np.array([ 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1.,
        1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 1., 1., 3., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 2., 1., 2., 1., 1., 1., 1.,
        1., 1., 2., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 1., 1., 2., 1., 1., 2.,
        1., 2., 1., 1., 1., 1., 2., 2., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 2., 2., 2., 1.,
        1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
        1., 2., 1., 1., 2., 1., 1., 1., 1., 2., 1., 1., 1., 1., 1., 1.,
        1., 1., 1., 1., 1., 1., 2., 1., 1., 1., 2., 1., 1., 1., 1., 1.,
        1.])
    #p-value verified with matlab and R to 5 significant digits
    assert_array_almost_equal(stats.stats.mannwhitneyu(x,y),
                    (16980.5, 2.8214327656317373e-005), decimal=12)



def test_pointbiserial():
    # copied from mstats tests removing nans
    x = [1,0,1,1,1,1,0,1,0,0,0,1,1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,1,0,
         0,0,0,0,1]
    y = [14.8,13.8,12.4,10.1,7.1,6.1,5.8,4.6,4.3,3.5,3.3,3.2,3.0,
         2.8,2.8,2.5,2.4,2.3,2.1,1.7,1.7,1.5,1.3,1.3,1.2,1.2,1.1,
         0.8,0.7,0.6,0.5,0.2,0.2,0.1]
    assert_almost_equal(stats.pointbiserialr(x, y)[0], 0.36149, 5)


def test_obrientransform():
    #this is a regression test to check np.var replacement
    #I didn't separately verigy the numbers
    x1 = np.arange(5)
    result = np.array(
      [[  5.41666667,   1.04166667,  -0.41666667,   1.04166667,  5.41666667],
       [ 21.66666667,   4.16666667,  -1.66666667,   4.16666667, 21.66666667]])
    assert_array_almost_equal(stats.obrientransform(x1, 2*x1), result, decimal=8)


class HarMeanTestCase:
    def test_1dlist(self):
        ''' Test a 1d list'''
        a=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
        b = 34.1417152147
        self.do(a, b)
    def test_1darray(self):
        ''' Test a 1d array'''
        a=np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
        b = 34.1417152147
        self.do(a, b)
    def test_1dma(self):
        ''' Test a 1d masked array'''
        a=np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
        b = 34.1417152147
        self.do(a, b)
    def test_1dmavalue(self):
        ''' Test a 1d masked array with a masked value'''
        a=np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100],
                      mask=[0,0,0,0,0,0,0,0,0,1])
        b = 31.8137186141
        self.do(a, b)

    # Note the next tests use axis=None as default, not axis=0
    def test_2dlist(self):
        ''' Test a 2d list'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = 38.6696271841
        self.do(a, b)
    def test_2darray(self):
        ''' Test a 2d array'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = 38.6696271841
        self.do(np.array(a), b)
    def test_2dma(self):
        ''' Test a 2d masked array'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = 38.6696271841
        self.do(np.ma.array(a), b)
    def test_2daxis0(self):
        ''' Test a 2d list with axis=0'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = np.array([ 22.88135593,  39.13043478,  52.90076336,  65.45454545])
        self.do(a, b, axis=0)
    def test_2daxis1(self):
        ''' Test a 2d list with axis=1'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = np.array([  19.2       ,   63.03939962,  103.80078637])
        self.do(a, b, axis=1)
    def test_2dmatrixdaxis0(self):
        ''' Test a 2d list with axis=0'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = np.matrix([[ 22.88135593,  39.13043478,  52.90076336,  65.45454545]])
        self.do(np.matrix(a), b, axis=0)
    def test_2dmatrixaxis1(self):
        ''' Test a 2d list with axis=1'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = np.matrix([[  19.2       ,   63.03939962,  103.80078637]]).T
        self.do(np.matrix(a), b, axis=1)
##    def test_dtype(self):
##        ''' Test a 1d list with a new dtype'''
##        a=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
##        b = 34.1417152147
##        self.do(a, b, dtype=np.float128)  # does not work on Win32

class TestHarMean(HarMeanTestCase, TestCase):
    def do(self, a, b, axis=None, dtype=None):
        x = stats.hmean(a, axis=axis, dtype=dtype)
        assert_almost_equal(b, x)
        assert_equal(x.dtype, dtype)

class GeoMeanTestCase:
    def test_1dlist(self):
        ''' Test a 1d list'''
        a=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
        b = 45.2872868812
        self.do(a, b)
    def test_1darray(self):
        ''' Test a 1d array'''
        a=np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
        b = 45.2872868812
        self.do(a, b)
    def test_1dma(self):
        ''' Test a 1d masked array'''
        a=np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100])
        b = 45.2872868812
        self.do(a, b)
    def test_1dmavalue(self):
        ''' Test a 1d masked array with a masked value'''
        a=np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 100], mask=[0,0,0,0,0,0,0,0,0,1])
        b = 41.4716627439
        self.do(a, b)

    # Note the next tests use axis=None as default, not axis=0
    def test_2dlist(self):
        ''' Test a 2d list'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = 52.8885199
        self.do(a, b)
    def test_2darray(self):
        ''' Test a 2d array'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = 52.8885199
        self.do(np.array(a), b)
    def test_2dma(self):
        ''' Test a 2d masked array'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = 52.8885199
        self.do(np.ma.array(a), b)
    def test_2daxis0(self):
        ''' Test a 2d list with axis=0'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = np.array([35.56893304,  49.32424149,  61.3579244 ,  72.68482371])
        self.do(a, b, axis=0)
    def test_2daxis1(self):
        ''' Test a 2d list with axis=1'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = np.array([  22.13363839,   64.02171746,  104.40086817])
        self.do(a, b, axis=1)
    def test_2dmatrixdaxis0(self):
        ''' Test a 2d list with axis=0'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = np.matrix([[35.56893304,  49.32424149,  61.3579244 ,  72.68482371]])
        self.do(np.matrix(a), b, axis=0)
    def test_2dmatrixaxis1(self):
        ''' Test a 2d list with axis=1'''
        a=[[10, 20, 30, 40], [50, 60, 70, 80], [90, 100, 110, 120]]
        b = np.matrix([[  22.13363839,   64.02171746,  104.40086817]]).T
        self.do(np.matrix(a), b, axis=1)
##    def test_dtype(self):
##        ''' Test a 1d list with a new dtype'''
##        a=[10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
##        b = 45.2872868812
##        self.do(a, b, dtype=np.float128)  # does not exist on win32
    def test_1dlist0(self):
        ''' Test a 1d list with zero element'''
        a=[10, 20, 30, 40, 50, 60, 70, 80, 90, 0]
        b = 0.0 # due to exp(-inf)=0
        olderr = np.seterr(all='ignore')
        try:
            self.do(a, b)
        finally:
            np.seterr(**olderr)

    def test_1darray0(self):
        ''' Test a 1d array with zero element'''
        a=np.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 0])
        b = 0.0 # due to exp(-inf)=0
        olderr = np.seterr(all='ignore')
        try:
            self.do(a, b)
        finally:
            np.seterr(**olderr)

    def test_1dma0(self):
        ''' Test a 1d masked array with zero element'''
        a=np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, 0])
        b = 41.4716627439
        olderr = np.seterr(all='ignore')
        try:
            self.do(a, b)
        finally:
            np.seterr(**olderr)

    def test_1dmainf(self):
        ''' Test a 1d masked array with negative element'''
        a=np.ma.array([10, 20, 30, 40, 50, 60, 70, 80, 90, -1])
        b = 41.4716627439
        olderr = np.seterr(all='ignore')
        try:
            self.do(a, b)
        finally:
            np.seterr(**olderr)

class TestGeoMean(GeoMeanTestCase, TestCase):
    def do(self, a, b, axis=None, dtype=None):
        #Note this doesn't test when axis is not specified
        x = stats.gmean(a, axis=axis, dtype=dtype)
        assert_almost_equal(b, x)
        assert_equal(x.dtype, dtype)


def test_binomtest():
    # precision tests compared to R for ticket:986
    pp = np.concatenate(( np.linspace(0.1,0.2,5), np.linspace(0.45,0.65,5),
                          np.linspace(0.85,0.95,5)))
    n = 501
    x = 450
    results = [0.0, 0.0, 1.0159969301994141e-304,
    2.9752418572150531e-275, 7.7668382922535275e-250,
    2.3381250925167094e-099, 7.8284591587323951e-081,
    9.9155947819961383e-065, 2.8729390725176308e-050,
    1.7175066298388421e-037, 0.0021070691951093692,
    0.12044570587262322, 0.88154763174802508, 0.027120993063129286,
    2.6102587134694721e-006]

    for p, res in zip(pp,results):
        assert_approx_equal(stats.binom_test(x, n, p), res,
                            significant=12, err_msg='fail forp=%f'%p)

    assert_approx_equal(stats.binom_test(50,100,0.1), 5.8320387857343647e-024,
                            significant=12, err_msg='fail forp=%f'%p)

class Test_Trim(object):
    # test trim functions
    def test_trim1(self):
        a = np.arange(11)
        assert_equal(stats.trim1(a, 0.1), np.arange(10))
        assert_equal(stats.trim1(a, 0.2), np.arange(9))
        assert_equal(stats.trim1(a, 0.2, tail='left'), np.arange(2,11))
        assert_equal(stats.trim1(a, 3/11., tail='left'), np.arange(3,11))

    def test_trimboth(self):
        a = np.arange(11)
        assert_equal(stats.trimboth(a, 3/11.), np.arange(3,8))
        assert_equal(stats.trimboth(a, 0.2), np.array([2, 3, 4, 5, 6, 7, 8]))
        assert_equal(stats.trimboth(np.arange(24).reshape(6,4), 0.2),
                     np.arange(4,20).reshape(4,4))
        assert_equal(stats.trimboth(np.arange(24).reshape(4,6).T, 2/6.),
               np.array([[ 2,  8, 14, 20],[ 3,  9, 15, 21]]))
        assert_raises(ValueError, stats.trimboth,
               np.arange(24).reshape(4,6).T, 4/6.)

    def test_trim_mean(self):
        assert_equal(stats.trim_mean(np.arange(24).reshape(4,6).T, 2/6.),
                        np.array([  2.5,   8.5,  14.5,  20.5]))
        assert_equal(stats.trim_mean(np.arange(24).reshape(4,6), 2/6.),
                        np.array([  9.,  10.,  11.,  12.,  13.,  14.]))
        assert_equal(stats.trim_mean(np.arange(24), 2/6.), 11.5)
        assert_equal(stats.trim_mean([5,4,3,1,2,0], 2/6.), 2.5)


class TestSigamClip(object):
    def test_sigmaclip1(self):
        a = np.concatenate((np.linspace(9.5,10.5,31),np.linspace(0,20,5)))
        fact = 4  #default
        c, low, upp = stats.sigmaclip(a)
        assert_(c.min()>low)
        assert_(c.max()<upp)
        assert_equal(low, c.mean() - fact*c.std())
        assert_equal(upp, c.mean() + fact*c.std())
        assert_equal(c.size, a.size)

    def test_sigmaclip2(self):
        a = np.concatenate((np.linspace(9.5,10.5,31),np.linspace(0,20,5)))
        fact = 1.5
        c, low, upp = stats.sigmaclip(a, fact, fact)
        assert_(c.min()>low)
        assert_(c.max()<upp)
        assert_equal(low, c.mean() - fact*c.std())
        assert_equal(upp, c.mean() + fact*c.std())
        assert_equal(c.size, 4)
        assert_equal(a.size, 36) #check original array unchanged

    def test_sigmaclip3(self):
        a = np.concatenate((np.linspace(9.5,10.5,11),np.linspace(-100,-50,3)))
        fact = 1.8
        c, low, upp = stats.sigmaclip(a, fact, fact)
        assert_(c.min()>low)
        assert_(c.max()<upp)
        assert_equal(low, c.mean() - fact*c.std())
        assert_equal(upp, c.mean() + fact*c.std())
        assert_equal(c, np.linspace(9.5,10.5,11))


class TestFOneWay(TestCase):

    def test_trivial(self):
        """A trivial test of stats.f_oneway, with F=0."""
        F, p = stats.f_oneway([0,2], [0,2])
        assert_equal(F, 0.0)

    def test_basic(self):
        """A test of stats.f_oneway, with F=2."""
        F, p = stats.f_oneway([0,2], [2,4])
        # Despite being a floating point calculation, this data should
        # result in F being exactly 2.0.
        assert_equal(F, 2.0)

if __name__ == "__main__":
    run_module_suite()