File: discrete.rst

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (691 lines) | stat: -rw-r--r-- 24,538 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
.. _discrete-random-variables:


==================================
Discrete Statistical Distributions
==================================

Discrete random variables take on only a countable number of values.
The commonly used distributions are included in SciPy and described in
this document. Each discrete distribution can take one extra integer
parameter: :math:`L.` The relationship between the general distribution
:math:`p` and the standard distribution :math:`p_{0}` is

.. math::
   :nowrap:

    \[ p\left(x\right)=p_{0}\left(x-L\right)\]

which allows for shifting of the input. When a distribution generator
is initialized, the discrete distribution can either specify the
beginning and ending (integer) values :math:`a` and :math:`b` which must be such that

.. math::
   :nowrap:

    \[ p_{0}\left(x\right)=0\quad x<a\textrm{ or }x>b\]

in which case, it is assumed that the pdf function is specified on the
integers :math:`a+mk\leq b` where :math:`k` is a non-negative integer ( :math:`0,1,2,\ldots` ) and :math:`m` is a positive integer multiplier. Alternatively, the two lists :math:`x_{k}` and :math:`p\left(x_{k}\right)` can be provided directly in which case a dictionary is set up
internally to evaulate probabilities and generate random variates.


Probability Mass Function (PMF)
-------------------------------

The probability mass function of a random variable X is defined as the
probability that the random variable takes on a particular value.

.. math::
   :nowrap:

    \[ p\left(x_{k}\right)=P\left[X=x_{k}\right]\]

This is also sometimes called the probability density function,
although technically

.. math::
   :nowrap:

    \[ f\left(x\right)=\sum_{k}p\left(x_{k}\right)\delta\left(x-x_{k}\right)\]

is the probability density function for a discrete distribution [#]_ .



.. [#]
    XXX: Unknown layout Plain Layout: Note that we will be using :math:`p` to represent the probability mass function and a parameter (a
    XXX: probability). The usage should be obvious from context.



Cumulative Distribution Function (CDF)
--------------------------------------

The cumulative distribution function is

.. math::
   :nowrap:

    \[ F\left(x\right)=P\left[X\leq x\right]=\sum_{x_{k}\leq x}p\left(x_{k}\right)\]

and is also useful to be able to compute. Note that

.. math::
   :nowrap:

    \[ F\left(x_{k}\right)-F\left(x_{k-1}\right)=p\left(x_{k}\right)\]




Survival Function
-----------------

The survival function is just

.. math::
   :nowrap:

    \[ S\left(x\right)=1-F\left(x\right)=P\left[X>k\right]\]

the probability that the random variable is strictly larger than :math:`k` .

.. _discrete-ppf:

Percent Point Function (Inverse CDF)
------------------------------------

The percent point function is the inverse of the cumulative
distribution function and is

.. math::
   :nowrap:

    \[ G\left(q\right)=F^{-1}\left(q\right)\]

for discrete distributions, this must be modified for cases where
there is no :math:`x_{k}` such that :math:`F\left(x_{k}\right)=q.` In these cases we choose :math:`G\left(q\right)` to be the smallest value :math:`x_{k}=G\left(q\right)` for which :math:`F\left(x_{k}\right)\geq q` . If :math:`q=0` then we define :math:`G\left(0\right)=a-1` . This definition allows random variates to be defined in the same way
as with continuous rv's using the inverse cdf on a uniform
distribution to generate random variates.


Inverse survival function
-------------------------

The inverse survival function is the inverse of the survival function

.. math::
   :nowrap:

    \[ Z\left(\alpha\right)=S^{-1}\left(\alpha\right)=G\left(1-\alpha\right)\]

and is thus the smallest non-negative integer :math:`k` for which :math:`F\left(k\right)\geq1-\alpha` or the smallest non-negative integer :math:`k` for which :math:`S\left(k\right)\leq\alpha.`


Hazard functions
----------------

If desired, the hazard function and the cumulative hazard function
could be defined as

.. math::
   :nowrap:

    \[ h\left(x_{k}\right)=\frac{p\left(x_{k}\right)}{1-F\left(x_{k}\right)}\]

and

.. math::
   :nowrap:

    \[ H\left(x\right)=\sum_{x_{k}\leq x}h\left(x_{k}\right)=\sum_{x_{k}\leq x}\frac{F\left(x_{k}\right)-F\left(x_{k-1}\right)}{1-F\left(x_{k}\right)}.\]




Moments
-------

Non-central moments are defined using the PDF

.. math::
   :nowrap:

    \[ \mu_{m}^{\prime}=E\left[X^{m}\right]=\sum_{k}x_{k}^{m}p\left(x_{k}\right).\]

Central moments are computed similarly :math:`\mu=\mu_{1}^{\prime}`

.. math::
   :nowrap:

    \begin{eqnarray*} \mu_{m}=E\left[\left(X-\mu\right)^{m}\right] & = & \sum_{k}\left(x_{k}-\mu\right)^{m}p\left(x_{k}\right)\\  & = & \sum_{k=0}^{m}\left(-1\right)^{m-k}\left(\begin{array}{c} m\\ k\end{array}\right)\mu^{m-k}\mu_{k}^{\prime}\end{eqnarray*}

The mean is the first moment

.. math::
   :nowrap:

    \[ \mu=\mu_{1}^{\prime}=E\left[X\right]=\sum_{k}x_{k}p\left(x_{k}\right)\]

the variance is the second central moment

.. math::
   :nowrap:

    \[ \mu_{2}=E\left[\left(X-\mu\right)^{2}\right]=\sum_{x_{k}}x_{k}^{2}p\left(x_{k}\right)-\mu^{2}.\]

Skewness is defined as

.. math::
   :nowrap:

    \[ \gamma_{1}=\frac{\mu_{3}}{\mu_{2}^{3/2}}\]

while (Fisher) kurtosis is

.. math::
   :nowrap:

    \[ \gamma_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}-3,\]

so that a normal distribution has a kurtosis of zero.


Moment generating function
--------------------------

The moment generating function is defined as

.. math::
   :nowrap:

    \[ M_{X}\left(t\right)=E\left[e^{Xt}\right]=\sum_{x_{k}}e^{x_{k}t}p\left(x_{k}\right)\]

Moments are found as the derivatives of the moment generating function
evaluated at :math:`0.`


Fitting data
------------

To fit data to a distribution, maximizing the likelihood function is
common. Alternatively, some distributions have well-known minimum
variance unbiased estimators. These will be chosen by default, but the
likelihood function will always be available for minimizing.

If :math:`f_{i}\left(k;\boldsymbol{\theta}\right)` is the PDF of a random-variable where :math:`\boldsymbol{\theta}` is a vector of parameters ( *e.g.* :math:`L` and :math:`S` ), then for a collection of :math:`N` independent samples from this distribution, the joint distribution the
random vector :math:`\mathbf{k}` is

.. math::
   :nowrap:

    \[ f\left(\mathbf{k};\boldsymbol{\theta}\right)=\prod_{i=1}^{N}f_{i}\left(k_{i};\boldsymbol{\theta}\right).\]

The maximum likelihood estimate of the parameters :math:`\boldsymbol{\theta}` are the parameters which maximize this function with :math:`\mathbf{x}` fixed and given by the data:

.. math::
   :nowrap:

    \begin{eqnarray*} \hat{\boldsymbol{\theta}} & = & \arg\max_{\boldsymbol{\theta}}f\left(\mathbf{k};\boldsymbol{\theta}\right)\\  & = & \arg\min_{\boldsymbol{\theta}}l_{\mathbf{k}}\left(\boldsymbol{\theta}\right).\end{eqnarray*}

Where

.. math::
   :nowrap:

    \begin{eqnarray*} l_{\mathbf{k}}\left(\boldsymbol{\theta}\right) & = & -\sum_{i=1}^{N}\log f\left(k_{i};\boldsymbol{\theta}\right)\\  & = & -N\overline{\log f\left(k_{i};\boldsymbol{\theta}\right)}\end{eqnarray*}




Standard notation for mean
--------------------------

We will use

.. math::
   :nowrap:

    \[ \overline{y\left(\mathbf{x}\right)}=\frac{1}{N}\sum_{i=1}^{N}y\left(x_{i}\right)\]

where :math:`N` should be clear from context.


Combinations
------------

Note that

.. math::
   :nowrap:

    \[ k!=k\cdot\left(k-1\right)\cdot\left(k-2\right)\cdot\cdots\cdot1=\Gamma\left(k+1\right)\]

and has special cases of

.. math::
   :nowrap:

    \begin{eqnarray*} 0! & \equiv & 1\\ k! & \equiv & 0\quad k<0\end{eqnarray*}

and

.. math::
   :nowrap:

    \[ \left(\begin{array}{c} n\\ k\end{array}\right)=\frac{n!}{\left(n-k\right)!k!}.\]

If :math:`n<0` or :math:`k<0` or :math:`k>n` we define :math:`\left(\begin{array}{c} n\\ k\end{array}\right)=0`


Bernoulli
=========

A Bernoulli random variable of parameter :math:`p` takes one of only two values :math:`X=0` or :math:`X=1` . The probability of success ( :math:`X=1` ) is :math:`p` , and the probability of failure ( :math:`X=0` ) is :math:`1-p.` It can be thought of as a binomial random variable with :math:`n=1` . The PMF is :math:`p\left(k\right)=0` for :math:`k\neq0,1` and

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;p\right) & = & \begin{cases} 1-p & k=0\\ p & k=1\end{cases}\\ F\left(x;p\right) & = & \begin{cases} 0 & x<0\\ 1-p & 0\le x<1\\ 1 & 1\leq x\end{cases}\\ G\left(q;p\right) & = & \begin{cases} 0 & 0\leq q<1-p\\ 1 & 1-p\leq q\leq1\end{cases}\\ \mu & = & p\\ \mu_{2} & = & p\left(1-p\right)\\ \gamma_{3} & = & \frac{1-2p}{\sqrt{p\left(1-p\right)}}\\ \gamma_{4} & = & \frac{1-6p\left(1-p\right)}{p\left(1-p\right)}\end{eqnarray*}





.. math::
   :nowrap:

    \[ M\left(t\right)=1-p\left(1-e^{t}\right)\]





.. math::
   :nowrap:

    \[ \mu_{m}^{\prime}=p\]





.. math::
   :nowrap:

    \[ h\left[X\right]=p\log p+\left(1-p\right)\log\left(1-p\right)\]




Binomial
========

A binomial random variable with parameters :math:`\left(n,p\right)` can be described as the sum of :math:`n` independent Bernoulli random variables of parameter :math:`p;`

.. math::
   :nowrap:

    \[ Y=\sum_{i=1}^{n}X_{i}.\]

Therefore, this random variable counts the number of successes in :math:`n` independent trials of a random experiment where the probability of
success is :math:`p.`

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;n,p\right) & = & \left(\begin{array}{c} n\\ k\end{array}\right)p^{k}\left(1-p\right)^{n-k}\,\, k\in\left\{ 0,1,\ldots n\right\} ,\\ F\left(x;n,p\right) & = & \sum_{k\leq x}\left(\begin{array}{c} n\\ k\end{array}\right)p^{k}\left(1-p\right)^{n-k}=I_{1-p}\left(n-\left\lfloor x\right\rfloor ,\left\lfloor x\right\rfloor +1\right)\quad x\geq0\end{eqnarray*}

where the incomplete beta integral is

.. math::
   :nowrap:

    \[ I_{x}\left(a,b\right)=\frac{\Gamma\left(a+b\right)}{\Gamma\left(a\right)\Gamma\left(b\right)}\int_{0}^{x}t^{a-1}\left(1-t\right)^{b-1}dt.\]

Now

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & np\\ \mu_{2} & = & np\left(1-p\right)\\ \gamma_{1} & = & \frac{1-2p}{\sqrt{np\left(1-p\right)}}\\ \gamma_{2} & = & \frac{1-6p\left(1-p\right)}{np\left(1-p\right)}.\end{eqnarray*}



.. math::
   :nowrap:

    \[ M\left(t\right)=\left[1-p\left(1-e^{t}\right)\right]^{n}\]




Boltzmann (truncated Planck)
============================



.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;N,\lambda\right) & = & \frac{1-e^{-\lambda}}{1-e^{-\lambda N}}\exp\left(-\lambda k\right)\quad k\in\left\{ 0,1,\ldots,N-1\right\} \\ F\left(x;N,\lambda\right) & = & \left\{ \begin{array}{cc} 0 & x<0\\ \frac{1-\exp\left[-\lambda\left(\left\lfloor x\right\rfloor +1\right)\right]}{1-\exp\left(-\lambda N\right)} & 0\leq x\leq N-1\\ 1 & x\geq N-1\end{array}\right.\\ G\left(q,\lambda\right) & = & \left\lceil -\frac{1}{\lambda}\log\left[1-q\left(1-e^{-\lambda N}\right)\right]-1\right\rceil \end{eqnarray*}

Define :math:`z=e^{-\lambda}`

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \frac{z}{1-z}-\frac{Nz^{N}}{1-z^{N}}\\ \mu_{2} & = & \frac{z}{\left(1-z\right)^{2}}-\frac{N^{2}z^{N}}{\left(1-z^{N}\right)^{2}}\\ \gamma_{1} & = & \frac{z\left(1+z\right)\left(\frac{1-z^{N}}{1-z}\right)^{3}-N^{3}z^{N}\left(1+z^{N}\right)}{\left[z\left(\frac{1-z^{N}}{1-z}\right)^{2}-N^{2}z^{N}\right]^{3/2}}\\ \gamma_{2} & = & \frac{z\left(1+4z+z^{2}\right)\left(\frac{1-z^{N}}{1-z}\right)^{4}-N^{4}z^{N}\left(1+4z^{N}+z^{2N}\right)}{\left[z\left(\frac{1-z^{N}}{1-z}\right)^{2}-N^{2}z^{N}\right]^{2}}\end{eqnarray*}



.. math::
   :nowrap:

    \[ M\left(t\right)=\frac{1-e^{N\left(t-\lambda\right)}}{1-e^{t-\lambda}}\frac{1-e^{-\lambda}}{1-e^{-\lambda N}}\]




Planck (discrete exponential)
=============================

Named Planck because of its relationship to the black-body problem he
solved.



.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;\lambda\right) & = & \left(1-e^{-\lambda}\right)e^{-\lambda k}\quad k\lambda\geq0\\ F\left(x;\lambda\right) & = & 1-e^{-\lambda\left(\left\lfloor x\right\rfloor +1\right)}\quad x\lambda\geq0\\ G\left(q;\lambda\right) & = & \left\lceil -\frac{1}{\lambda}\log\left[1-q\right]-1\right\rceil .\end{eqnarray*}



.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \frac{1}{e^{\lambda}-1}\\ \mu_{2} & = & \frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)^{2}}\\ \gamma_{1} & = & 2\cosh\left(\frac{\lambda}{2}\right)\\ \gamma_{2} & = & 4+2\cosh\left(\lambda\right)\end{eqnarray*}





.. math::
   :nowrap:

    \[ M\left(t\right)=\frac{1-e^{-\lambda}}{1-e^{t-\lambda}}\]



.. math::
   :nowrap:

    \[ h\left[X\right]=\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}-\log\left(1-e^{-\lambda}\right)\]




Poisson
=======

The Poisson random variable counts the number of successes in :math:`n` independent Bernoulli trials in the limit as :math:`n\rightarrow\infty` and :math:`p\rightarrow0` where the probability of success in each trial is :math:`p` and :math:`np=\lambda\geq0` is a constant. It can be used to approximate the Binomial random
variable or in it's own right to count the number of events that occur
in the interval :math:`\left[0,t\right]` for a process satisfying certain "sparsity "constraints. The functions are

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;\lambda\right) & = & e^{-\lambda}\frac{\lambda^{k}}{k!}\quad k\geq0,\\ F\left(x;\lambda\right) & = & \sum_{n=0}^{\left\lfloor x\right\rfloor }e^{-\lambda}\frac{\lambda^{n}}{n!}=\frac{1}{\Gamma\left(\left\lfloor x\right\rfloor +1\right)}\int_{\lambda}^{\infty}t^{\left\lfloor x\right\rfloor }e^{-t}dt,\\ \mu & = & \lambda\\ \mu_{2} & = & \lambda\\ \gamma_{1} & = & \frac{1}{\sqrt{\lambda}}\\ \gamma_{2} & = & \frac{1}{\lambda}.\end{eqnarray*}





.. math::
   :nowrap:

    \[ M\left(t\right)=\exp\left[\lambda\left(e^{t}-1\right)\right].\]




Geometric
=========

The geometric random variable with parameter :math:`p\in\left(0,1\right)` can be defined as the number of trials required to obtain a success
where the probability of success on each trial is :math:`p` . Thus,

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;p\right) & = & \left(1-p\right)^{k-1}p\quad k\geq1\\ F\left(x;p\right) & = & 1-\left(1-p\right)^{\left\lfloor x\right\rfloor }\quad x\geq1\\ G\left(q;p\right) & = & \left\lceil \frac{\log\left(1-q\right)}{\log\left(1-p\right)}\right\rceil \\ \mu & = & \frac{1}{p}\\ \mu_{2} & = & \frac{1-p}{p^{2}}\\ \gamma_{1} & = & \frac{2-p}{\sqrt{1-p}}\\ \gamma_{2} & = & \frac{p^{2}-6p+6}{1-p}.\end{eqnarray*}





.. math::
   :nowrap:

    \begin{eqnarray*} M\left(t\right) & = & \frac{p}{e^{-t}-\left(1-p\right)}\end{eqnarray*}




Negative Binomial
=================

The negative binomial random variable with parameters :math:`n` and :math:`p\in\left(0,1\right)` can be defined as the number of *extra* independent trials (beyond :math:`n` ) required to accumulate a total of :math:`n` successes where the probability of a success on each trial is :math:`p.` Equivalently, this random variable is the number of failures
encoutered while accumulating :math:`n` successes during independent trials of an experiment that succeeds
with probability :math:`p.` Thus,

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;n,p\right) & = & \left(\begin{array}{c} k+n-1\\ n-1\end{array}\right)p^{n}\left(1-p\right)^{k}\quad k\geq0\\ F\left(x;n,p\right) & = & \sum_{i=0}^{\left\lfloor x\right\rfloor }\left(\begin{array}{c} i+n-1\\ i\end{array}\right)p^{n}\left(1-p\right)^{i}\quad x\geq0\\  & = & I_{p}\left(n,\left\lfloor x\right\rfloor +1\right)\quad x\geq0\\ \mu & = & n\frac{1-p}{p}\\ \mu_{2} & = & n\frac{1-p}{p^{2}}\\ \gamma_{1} & = & \frac{2-p}{\sqrt{n\left(1-p\right)}}\\ \gamma_{2} & = & \frac{p^{2}+6\left(1-p\right)}{n\left(1-p\right)}.\end{eqnarray*}

Recall that :math:`I_{p}\left(a,b\right)` is the incomplete beta integral.


Hypergeometric
==============

The hypergeometric random variable with parameters :math:`\left(M,n,N\right)` counts the number of "good "objects in a sample of size :math:`N` chosen without replacement from a population of :math:`M` objects where :math:`n` is the number of "good "objects in the total population.

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;N,n,M\right) & = & \frac{\left(\begin{array}{c} n\\ k\end{array}\right)\left(\begin{array}{c} M-n\\ N-k\end{array}\right)}{\left(\begin{array}{c} M\\ N\end{array}\right)}\quad N-\left(M-n\right)\leq k\leq\min\left(n,N\right)\\ F\left(x;N,n,M\right) & = & \sum_{k=0}^{\left\lfloor x\right\rfloor }\frac{\left(\begin{array}{c} m\\ k\end{array}\right)\left(\begin{array}{c} N-m\\ n-k\end{array}\right)}{\left(\begin{array}{c} N\\ n\end{array}\right)},\\ \mu & = & \frac{nN}{M}\\ \mu_{2} & = & \frac{nN\left(M-n\right)\left(M-N\right)}{M^{2}\left(M-1\right)}\\ \gamma_{1} & = & \frac{\left(M-2n\right)\left(M-2N\right)}{M-2}\sqrt{\frac{M-1}{nN\left(M-m\right)\left(M-n\right)}}\\ \gamma_{2} & = & \frac{g\left(N,n,M\right)}{nN\left(M-n\right)\left(M-3\right)\left(M-2\right)\left(N-M\right)}\end{eqnarray*}

where (defining :math:`m=M-n` )

.. math::
   :nowrap:

    \begin{eqnarray*} g\left(N,n,M\right) & = & m^{3}-m^{5}+3m^{2}n-6m^{3}n+m^{4}n+3mn^{2}\\  &  & -12m^{2}n^{2}+8m^{3}n^{2}+n^{3}-6mn^{3}+8m^{2}n^{3}\\  &  & +mn^{4}-n^{5}-6m^{3}N+6m^{4}N+18m^{2}nN\\  &  & -6m^{3}nN+18mn^{2}N-24m^{2}n^{2}N-6n^{3}N\\  &  & -6mn^{3}N+6n^{4}N+6m^{2}N^{2}-6m^{3}N^{2}-24mnN^{2}\\  &  & +12m^{2}nN^{2}+6n^{2}N^{2}+12mn^{2}N^{2}-6n^{3}N^{2}.\end{eqnarray*}




Zipf (Zeta)
===========

A random variable has the zeta distribution (also called the zipf
distribution) with parameter :math:`\alpha>1` if it's probability mass function is given by

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;\alpha\right) & = & \frac{1}{\zeta\left(\alpha\right)k^{\alpha}}\quad k\geq1\end{eqnarray*}

where

.. math::
   :nowrap:

    \[ \zeta\left(\alpha\right)=\sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}\]

is the Riemann zeta function. Other functions of this distribution are

.. math::
   :nowrap:

    \begin{eqnarray*} F\left(x;\alpha\right) & = & \frac{1}{\zeta\left(\alpha\right)}\sum_{k=1}^{\left\lfloor x\right\rfloor }\frac{1}{k^{\alpha}}\\ \mu & = & \frac{\zeta_{1}}{\zeta_{0}}\quad\alpha>2\\ \mu_{2} & = & \frac{\zeta_{2}\zeta_{0}-\zeta_{1}^{2}}{\zeta_{0}^{2}}\quad\alpha>3\\ \gamma_{1} & = & \frac{\zeta_{3}\zeta_{0}^{2}-3\zeta_{0}\zeta_{1}\zeta_{2}+2\zeta_{1}^{3}}{\left[\zeta_{2}\zeta_{0}-\zeta_{1}^{2}\right]^{3/2}}\quad\alpha>4\\ \gamma_{2} & = & \frac{\zeta_{4}\zeta_{0}^{3}-4\zeta_{3}\zeta_{1}\zeta_{0}^{2}+12\zeta_{2}\zeta_{1}^{2}\zeta_{0}-6\zeta_{1}^{4}-3\zeta_{2}^{2}\zeta_{0}^{2}}{\left(\zeta_{2}\zeta_{0}-\zeta_{1}^{2}\right)^{2}}.\end{eqnarray*}





.. math::
   :nowrap:

    \begin{eqnarray*} M\left(t\right) & = & \frac{\textrm{Li}_{\alpha}\left(e^{t}\right)}{\zeta\left(\alpha\right)}\end{eqnarray*}

where :math:`\zeta_{i}=\zeta\left(\alpha-i\right)` and :math:`\textrm{Li}_{n}\left(z\right)` is the :math:`n^{\textrm{th}}` polylogarithm function of :math:`z` defined as

.. math::
   :nowrap:

    \[ \textrm{Li}_{n}\left(z\right)\equiv\sum_{k=1}^{\infty}\frac{z^{k}}{k^{n}}\]



.. math::
   :nowrap:

    \[ \mu_{n}^{\prime}=\left.M^{\left(n\right)}\left(t\right)\right|_{t=0}=\left.\frac{\textrm{Li}_{\alpha-n}\left(e^{t}\right)}{\zeta\left(a\right)}\right|_{t=0}=\frac{\zeta\left(\alpha-n\right)}{\zeta\left(\alpha\right)}\]




Logarithmic (Log-Series, Series)
================================

The logarimthic distribution with parameter :math:`p` has a probability mass function with terms proportional to the Taylor
series expansion of :math:`\log\left(1-p\right)`

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;p\right) & = & -\frac{p^{k}}{k\log\left(1-p\right)}\quad k\geq1\\ F\left(x;p\right) & = & -\frac{1}{\log\left(1-p\right)}\sum_{k=1}^{\left\lfloor x\right\rfloor }\frac{p^{k}}{k}=1+\frac{p^{1+\left\lfloor x\right\rfloor }\Phi\left(p,1,1+\left\lfloor x\right\rfloor \right)}{\log\left(1-p\right)}\end{eqnarray*}

where

.. math::
   :nowrap:

    \[ \Phi\left(z,s,a\right)=\sum_{k=0}^{\infty}\frac{z^{k}}{\left(a+k\right)^{s}}\]

is the Lerch Transcendent. Also define :math:`r=\log\left(1-p\right)`

.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & -\frac{p}{\left(1-p\right)r}\\ \mu_{2} & = & -\frac{p\left[p+r\right]}{\left(1-p\right)^{2}r^{2}}\\ \gamma_{1} & = & -\frac{2p^{2}+3pr+\left(1+p\right)r^{2}}{r\left(p+r\right)\sqrt{-p\left(p+r\right)}}r\\ \gamma_{2} & = & -\frac{6p^{3}+12p^{2}r+p\left(4p+7\right)r^{2}+\left(p^{2}+4p+1\right)r^{3}}{p\left(p+r\right)^{2}}.\end{eqnarray*}



.. math::
   :nowrap:

    \begin{eqnarray*} M\left(t\right) & = & -\frac{1}{\log\left(1-p\right)}\sum_{k=1}^{\infty}\frac{e^{tk}p^{k}}{k}\\  & = & \frac{\log\left(1-pe^{t}\right)}{\log\left(1-p\right)}\end{eqnarray*}

Thus,

.. math::
   :nowrap:

    \[ \mu_{n}^{\prime}=\left.M^{\left(n\right)}\left(t\right)\right|_{t=0}=\left.\frac{\textrm{Li}_{1-n}\left(pe^{t}\right)}{\log\left(1-p\right)}\right|_{t=0}=-\frac{\textrm{Li}_{1-n}\left(p\right)}{\log\left(1-p\right)}.\]




Discrete Uniform (randint)
==========================

The discrete uniform distribution with parameters :math:`\left(a,b\right)` constructs a random variable that has an equal probability of being
any one of the integers in the half-open range :math:`[a,b).` If :math:`a` is not given it is assumed to be zero and the only parameter is :math:`b.` Therefore,

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k;a,b\right) & = & \frac{1}{b-a}\quad a\leq k<b\\ F\left(x;a,b\right) & = & \frac{\left\lfloor x\right\rfloor -a}{b-a}\quad a\leq x\leq b\\ G\left(q;a,b\right) & = & \left\lceil q\left(b-a\right)+a\right\rceil \\ \mu & = & \frac{b+a-1}{2}\\ \mu_{2} & = & \frac{\left(b-a-1\right)\left(b-a+1\right)}{12}\\ \gamma_{1} & = & 0\\ \gamma_{2} & = & -\frac{6}{5}\frac{\left(b-a\right)^{2}+1}{\left(b-a-1\right)\left(b-a+1\right)}.\end{eqnarray*}





.. math::
   :nowrap:

    \begin{eqnarray*} M\left(t\right) & = & \frac{1}{b-a}\sum_{k=a}^{b-1}e^{tk}\\  & = & \frac{e^{bt}-e^{at}}{\left(b-a\right)\left(e^{t}-1\right)}\end{eqnarray*}




Discrete Laplacian
==================

Defined over all integers for :math:`a>0`

.. math::
   :nowrap:

    \begin{eqnarray*} p\left(k\right) & = & \tanh\left(\frac{a}{2}\right)e^{-a\left|k\right|},\\ F\left(x\right) & = & \left\{ \begin{array}{cc} \frac{e^{a\left(\left\lfloor x\right\rfloor +1\right)}}{e^{a}+1} & \left\lfloor x\right\rfloor <0,\\ 1-\frac{e^{-a\left\lfloor x\right\rfloor }}{e^{a}+1} & \left\lfloor x\right\rfloor \geq0.\end{array}\right.\\ G\left(q\right) & = & \left\{ \begin{array}{cc} \left\lceil \frac{1}{a}\log\left[q\left(e^{a}+1\right)\right]-1\right\rceil  & q<\frac{1}{1+e^{-a}},\\ \left\lceil -\frac{1}{a}\log\left[\left(1-q\right)\left(1+e^{a}\right)\right]\right\rceil  & q\geq\frac{1}{1+e^{-a}}.\end{array}\right.\end{eqnarray*}



.. math::
   :nowrap:

    \begin{eqnarray*} M\left(t\right) & = & \tanh\left(\frac{a}{2}\right)\sum_{k=-\infty}^{\infty}e^{tk}e^{-a\left|k\right|}\\  & = & C\left(1+\sum_{k=1}^{\infty}e^{-\left(t+a\right)k}+\sum_{1}^{\infty}e^{\left(t-a\right)k}\right)\\  & = & \tanh\left(\frac{a}{2}\right)\left(1+\frac{e^{-\left(t+a\right)}}{1-e^{-\left(t+a\right)}}+\frac{e^{t-a}}{1-e^{t-a}}\right)\\  & = & \frac{\tanh\left(\frac{a}{2}\right)\sinh a}{\cosh a-\cosh t}.\end{eqnarray*}

Thus,

.. math::
   :nowrap:

    \[ \mu_{n}^{\prime}=M^{\left(n\right)}\left(0\right)=\left[1+\left(-1\right)^{n}\right]\textrm{Li}_{-n}\left(e^{-a}\right)\]

where :math:`\textrm{Li}_{-n}\left(z\right)` is the polylogarithm function of order :math:`-n` evaluated at :math:`z.`

.. math::
   :nowrap:

    \[ h\left[X\right]=-\log\left(\tanh\left(\frac{a}{2}\right)\right)+\frac{a}{\sinh a}\]




Discrete Gaussian*
==================

Defined for all :math:`\mu` and :math:`\lambda>0` and :math:`k`

.. math::
   :nowrap:

    \[ p\left(k;\mu,\lambda\right)=\frac{1}{Z\left(\lambda\right)}\exp\left[-\lambda\left(k-\mu\right)^{2}\right]\]

where

.. math::
   :nowrap:

    \[ Z\left(\lambda\right)=\sum_{k=-\infty}^{\infty}\exp\left[-\lambda k^{2}\right]\]



.. math::
   :nowrap:

    \begin{eqnarray*} \mu & = & \mu\\ \mu_{2} & = & -\frac{\partial}{\partial\lambda}\log Z\left(\lambda\right)\\  & = & G\left(\lambda\right)e^{-\lambda}\end{eqnarray*}

where :math:`G\left(0\right)\rightarrow\infty` and :math:`G\left(\infty\right)\rightarrow2` with a minimum less than 2 near :math:`\lambda=1`

.. math::
   :nowrap:

    \[ G\left(\lambda\right)=\frac{1}{Z\left(\lambda\right)}\sum_{k=-\infty}^{\infty}k^{2}\exp\left[-\lambda\left(k+1\right)\left(k-1\right)\right]\]