1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
|
.. _discrete-random-variables:
==================================
Discrete Statistical Distributions
==================================
Discrete random variables take on only a countable number of values.
The commonly used distributions are included in SciPy and described in
this document. Each discrete distribution can take one extra integer
parameter: :math:`L.` The relationship between the general distribution
:math:`p` and the standard distribution :math:`p_{0}` is
.. math::
:nowrap:
\[ p\left(x\right)=p_{0}\left(x-L\right)\]
which allows for shifting of the input. When a distribution generator
is initialized, the discrete distribution can either specify the
beginning and ending (integer) values :math:`a` and :math:`b` which must be such that
.. math::
:nowrap:
\[ p_{0}\left(x\right)=0\quad x<a\textrm{ or }x>b\]
in which case, it is assumed that the pdf function is specified on the
integers :math:`a+mk\leq b` where :math:`k` is a non-negative integer ( :math:`0,1,2,\ldots` ) and :math:`m` is a positive integer multiplier. Alternatively, the two lists :math:`x_{k}` and :math:`p\left(x_{k}\right)` can be provided directly in which case a dictionary is set up
internally to evaulate probabilities and generate random variates.
Probability Mass Function (PMF)
-------------------------------
The probability mass function of a random variable X is defined as the
probability that the random variable takes on a particular value.
.. math::
:nowrap:
\[ p\left(x_{k}\right)=P\left[X=x_{k}\right]\]
This is also sometimes called the probability density function,
although technically
.. math::
:nowrap:
\[ f\left(x\right)=\sum_{k}p\left(x_{k}\right)\delta\left(x-x_{k}\right)\]
is the probability density function for a discrete distribution [#]_ .
.. [#]
XXX: Unknown layout Plain Layout: Note that we will be using :math:`p` to represent the probability mass function and a parameter (a
XXX: probability). The usage should be obvious from context.
Cumulative Distribution Function (CDF)
--------------------------------------
The cumulative distribution function is
.. math::
:nowrap:
\[ F\left(x\right)=P\left[X\leq x\right]=\sum_{x_{k}\leq x}p\left(x_{k}\right)\]
and is also useful to be able to compute. Note that
.. math::
:nowrap:
\[ F\left(x_{k}\right)-F\left(x_{k-1}\right)=p\left(x_{k}\right)\]
Survival Function
-----------------
The survival function is just
.. math::
:nowrap:
\[ S\left(x\right)=1-F\left(x\right)=P\left[X>k\right]\]
the probability that the random variable is strictly larger than :math:`k` .
.. _discrete-ppf:
Percent Point Function (Inverse CDF)
------------------------------------
The percent point function is the inverse of the cumulative
distribution function and is
.. math::
:nowrap:
\[ G\left(q\right)=F^{-1}\left(q\right)\]
for discrete distributions, this must be modified for cases where
there is no :math:`x_{k}` such that :math:`F\left(x_{k}\right)=q.` In these cases we choose :math:`G\left(q\right)` to be the smallest value :math:`x_{k}=G\left(q\right)` for which :math:`F\left(x_{k}\right)\geq q` . If :math:`q=0` then we define :math:`G\left(0\right)=a-1` . This definition allows random variates to be defined in the same way
as with continuous rv's using the inverse cdf on a uniform
distribution to generate random variates.
Inverse survival function
-------------------------
The inverse survival function is the inverse of the survival function
.. math::
:nowrap:
\[ Z\left(\alpha\right)=S^{-1}\left(\alpha\right)=G\left(1-\alpha\right)\]
and is thus the smallest non-negative integer :math:`k` for which :math:`F\left(k\right)\geq1-\alpha` or the smallest non-negative integer :math:`k` for which :math:`S\left(k\right)\leq\alpha.`
Hazard functions
----------------
If desired, the hazard function and the cumulative hazard function
could be defined as
.. math::
:nowrap:
\[ h\left(x_{k}\right)=\frac{p\left(x_{k}\right)}{1-F\left(x_{k}\right)}\]
and
.. math::
:nowrap:
\[ H\left(x\right)=\sum_{x_{k}\leq x}h\left(x_{k}\right)=\sum_{x_{k}\leq x}\frac{F\left(x_{k}\right)-F\left(x_{k-1}\right)}{1-F\left(x_{k}\right)}.\]
Moments
-------
Non-central moments are defined using the PDF
.. math::
:nowrap:
\[ \mu_{m}^{\prime}=E\left[X^{m}\right]=\sum_{k}x_{k}^{m}p\left(x_{k}\right).\]
Central moments are computed similarly :math:`\mu=\mu_{1}^{\prime}`
.. math::
:nowrap:
\begin{eqnarray*} \mu_{m}=E\left[\left(X-\mu\right)^{m}\right] & = & \sum_{k}\left(x_{k}-\mu\right)^{m}p\left(x_{k}\right)\\ & = & \sum_{k=0}^{m}\left(-1\right)^{m-k}\left(\begin{array}{c} m\\ k\end{array}\right)\mu^{m-k}\mu_{k}^{\prime}\end{eqnarray*}
The mean is the first moment
.. math::
:nowrap:
\[ \mu=\mu_{1}^{\prime}=E\left[X\right]=\sum_{k}x_{k}p\left(x_{k}\right)\]
the variance is the second central moment
.. math::
:nowrap:
\[ \mu_{2}=E\left[\left(X-\mu\right)^{2}\right]=\sum_{x_{k}}x_{k}^{2}p\left(x_{k}\right)-\mu^{2}.\]
Skewness is defined as
.. math::
:nowrap:
\[ \gamma_{1}=\frac{\mu_{3}}{\mu_{2}^{3/2}}\]
while (Fisher) kurtosis is
.. math::
:nowrap:
\[ \gamma_{2}=\frac{\mu_{4}}{\mu_{2}^{2}}-3,\]
so that a normal distribution has a kurtosis of zero.
Moment generating function
--------------------------
The moment generating function is defined as
.. math::
:nowrap:
\[ M_{X}\left(t\right)=E\left[e^{Xt}\right]=\sum_{x_{k}}e^{x_{k}t}p\left(x_{k}\right)\]
Moments are found as the derivatives of the moment generating function
evaluated at :math:`0.`
Fitting data
------------
To fit data to a distribution, maximizing the likelihood function is
common. Alternatively, some distributions have well-known minimum
variance unbiased estimators. These will be chosen by default, but the
likelihood function will always be available for minimizing.
If :math:`f_{i}\left(k;\boldsymbol{\theta}\right)` is the PDF of a random-variable where :math:`\boldsymbol{\theta}` is a vector of parameters ( *e.g.* :math:`L` and :math:`S` ), then for a collection of :math:`N` independent samples from this distribution, the joint distribution the
random vector :math:`\mathbf{k}` is
.. math::
:nowrap:
\[ f\left(\mathbf{k};\boldsymbol{\theta}\right)=\prod_{i=1}^{N}f_{i}\left(k_{i};\boldsymbol{\theta}\right).\]
The maximum likelihood estimate of the parameters :math:`\boldsymbol{\theta}` are the parameters which maximize this function with :math:`\mathbf{x}` fixed and given by the data:
.. math::
:nowrap:
\begin{eqnarray*} \hat{\boldsymbol{\theta}} & = & \arg\max_{\boldsymbol{\theta}}f\left(\mathbf{k};\boldsymbol{\theta}\right)\\ & = & \arg\min_{\boldsymbol{\theta}}l_{\mathbf{k}}\left(\boldsymbol{\theta}\right).\end{eqnarray*}
Where
.. math::
:nowrap:
\begin{eqnarray*} l_{\mathbf{k}}\left(\boldsymbol{\theta}\right) & = & -\sum_{i=1}^{N}\log f\left(k_{i};\boldsymbol{\theta}\right)\\ & = & -N\overline{\log f\left(k_{i};\boldsymbol{\theta}\right)}\end{eqnarray*}
Standard notation for mean
--------------------------
We will use
.. math::
:nowrap:
\[ \overline{y\left(\mathbf{x}\right)}=\frac{1}{N}\sum_{i=1}^{N}y\left(x_{i}\right)\]
where :math:`N` should be clear from context.
Combinations
------------
Note that
.. math::
:nowrap:
\[ k!=k\cdot\left(k-1\right)\cdot\left(k-2\right)\cdot\cdots\cdot1=\Gamma\left(k+1\right)\]
and has special cases of
.. math::
:nowrap:
\begin{eqnarray*} 0! & \equiv & 1\\ k! & \equiv & 0\quad k<0\end{eqnarray*}
and
.. math::
:nowrap:
\[ \left(\begin{array}{c} n\\ k\end{array}\right)=\frac{n!}{\left(n-k\right)!k!}.\]
If :math:`n<0` or :math:`k<0` or :math:`k>n` we define :math:`\left(\begin{array}{c} n\\ k\end{array}\right)=0`
Bernoulli
=========
A Bernoulli random variable of parameter :math:`p` takes one of only two values :math:`X=0` or :math:`X=1` . The probability of success ( :math:`X=1` ) is :math:`p` , and the probability of failure ( :math:`X=0` ) is :math:`1-p.` It can be thought of as a binomial random variable with :math:`n=1` . The PMF is :math:`p\left(k\right)=0` for :math:`k\neq0,1` and
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;p\right) & = & \begin{cases} 1-p & k=0\\ p & k=1\end{cases}\\ F\left(x;p\right) & = & \begin{cases} 0 & x<0\\ 1-p & 0\le x<1\\ 1 & 1\leq x\end{cases}\\ G\left(q;p\right) & = & \begin{cases} 0 & 0\leq q<1-p\\ 1 & 1-p\leq q\leq1\end{cases}\\ \mu & = & p\\ \mu_{2} & = & p\left(1-p\right)\\ \gamma_{3} & = & \frac{1-2p}{\sqrt{p\left(1-p\right)}}\\ \gamma_{4} & = & \frac{1-6p\left(1-p\right)}{p\left(1-p\right)}\end{eqnarray*}
.. math::
:nowrap:
\[ M\left(t\right)=1-p\left(1-e^{t}\right)\]
.. math::
:nowrap:
\[ \mu_{m}^{\prime}=p\]
.. math::
:nowrap:
\[ h\left[X\right]=p\log p+\left(1-p\right)\log\left(1-p\right)\]
Binomial
========
A binomial random variable with parameters :math:`\left(n,p\right)` can be described as the sum of :math:`n` independent Bernoulli random variables of parameter :math:`p;`
.. math::
:nowrap:
\[ Y=\sum_{i=1}^{n}X_{i}.\]
Therefore, this random variable counts the number of successes in :math:`n` independent trials of a random experiment where the probability of
success is :math:`p.`
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;n,p\right) & = & \left(\begin{array}{c} n\\ k\end{array}\right)p^{k}\left(1-p\right)^{n-k}\,\, k\in\left\{ 0,1,\ldots n\right\} ,\\ F\left(x;n,p\right) & = & \sum_{k\leq x}\left(\begin{array}{c} n\\ k\end{array}\right)p^{k}\left(1-p\right)^{n-k}=I_{1-p}\left(n-\left\lfloor x\right\rfloor ,\left\lfloor x\right\rfloor +1\right)\quad x\geq0\end{eqnarray*}
where the incomplete beta integral is
.. math::
:nowrap:
\[ I_{x}\left(a,b\right)=\frac{\Gamma\left(a+b\right)}{\Gamma\left(a\right)\Gamma\left(b\right)}\int_{0}^{x}t^{a-1}\left(1-t\right)^{b-1}dt.\]
Now
.. math::
:nowrap:
\begin{eqnarray*} \mu & = & np\\ \mu_{2} & = & np\left(1-p\right)\\ \gamma_{1} & = & \frac{1-2p}{\sqrt{np\left(1-p\right)}}\\ \gamma_{2} & = & \frac{1-6p\left(1-p\right)}{np\left(1-p\right)}.\end{eqnarray*}
.. math::
:nowrap:
\[ M\left(t\right)=\left[1-p\left(1-e^{t}\right)\right]^{n}\]
Boltzmann (truncated Planck)
============================
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;N,\lambda\right) & = & \frac{1-e^{-\lambda}}{1-e^{-\lambda N}}\exp\left(-\lambda k\right)\quad k\in\left\{ 0,1,\ldots,N-1\right\} \\ F\left(x;N,\lambda\right) & = & \left\{ \begin{array}{cc} 0 & x<0\\ \frac{1-\exp\left[-\lambda\left(\left\lfloor x\right\rfloor +1\right)\right]}{1-\exp\left(-\lambda N\right)} & 0\leq x\leq N-1\\ 1 & x\geq N-1\end{array}\right.\\ G\left(q,\lambda\right) & = & \left\lceil -\frac{1}{\lambda}\log\left[1-q\left(1-e^{-\lambda N}\right)\right]-1\right\rceil \end{eqnarray*}
Define :math:`z=e^{-\lambda}`
.. math::
:nowrap:
\begin{eqnarray*} \mu & = & \frac{z}{1-z}-\frac{Nz^{N}}{1-z^{N}}\\ \mu_{2} & = & \frac{z}{\left(1-z\right)^{2}}-\frac{N^{2}z^{N}}{\left(1-z^{N}\right)^{2}}\\ \gamma_{1} & = & \frac{z\left(1+z\right)\left(\frac{1-z^{N}}{1-z}\right)^{3}-N^{3}z^{N}\left(1+z^{N}\right)}{\left[z\left(\frac{1-z^{N}}{1-z}\right)^{2}-N^{2}z^{N}\right]^{3/2}}\\ \gamma_{2} & = & \frac{z\left(1+4z+z^{2}\right)\left(\frac{1-z^{N}}{1-z}\right)^{4}-N^{4}z^{N}\left(1+4z^{N}+z^{2N}\right)}{\left[z\left(\frac{1-z^{N}}{1-z}\right)^{2}-N^{2}z^{N}\right]^{2}}\end{eqnarray*}
.. math::
:nowrap:
\[ M\left(t\right)=\frac{1-e^{N\left(t-\lambda\right)}}{1-e^{t-\lambda}}\frac{1-e^{-\lambda}}{1-e^{-\lambda N}}\]
Planck (discrete exponential)
=============================
Named Planck because of its relationship to the black-body problem he
solved.
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;\lambda\right) & = & \left(1-e^{-\lambda}\right)e^{-\lambda k}\quad k\lambda\geq0\\ F\left(x;\lambda\right) & = & 1-e^{-\lambda\left(\left\lfloor x\right\rfloor +1\right)}\quad x\lambda\geq0\\ G\left(q;\lambda\right) & = & \left\lceil -\frac{1}{\lambda}\log\left[1-q\right]-1\right\rceil .\end{eqnarray*}
.. math::
:nowrap:
\begin{eqnarray*} \mu & = & \frac{1}{e^{\lambda}-1}\\ \mu_{2} & = & \frac{e^{-\lambda}}{\left(1-e^{-\lambda}\right)^{2}}\\ \gamma_{1} & = & 2\cosh\left(\frac{\lambda}{2}\right)\\ \gamma_{2} & = & 4+2\cosh\left(\lambda\right)\end{eqnarray*}
.. math::
:nowrap:
\[ M\left(t\right)=\frac{1-e^{-\lambda}}{1-e^{t-\lambda}}\]
.. math::
:nowrap:
\[ h\left[X\right]=\frac{\lambda e^{-\lambda}}{1-e^{-\lambda}}-\log\left(1-e^{-\lambda}\right)\]
Poisson
=======
The Poisson random variable counts the number of successes in :math:`n` independent Bernoulli trials in the limit as :math:`n\rightarrow\infty` and :math:`p\rightarrow0` where the probability of success in each trial is :math:`p` and :math:`np=\lambda\geq0` is a constant. It can be used to approximate the Binomial random
variable or in it's own right to count the number of events that occur
in the interval :math:`\left[0,t\right]` for a process satisfying certain "sparsity "constraints. The functions are
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;\lambda\right) & = & e^{-\lambda}\frac{\lambda^{k}}{k!}\quad k\geq0,\\ F\left(x;\lambda\right) & = & \sum_{n=0}^{\left\lfloor x\right\rfloor }e^{-\lambda}\frac{\lambda^{n}}{n!}=\frac{1}{\Gamma\left(\left\lfloor x\right\rfloor +1\right)}\int_{\lambda}^{\infty}t^{\left\lfloor x\right\rfloor }e^{-t}dt,\\ \mu & = & \lambda\\ \mu_{2} & = & \lambda\\ \gamma_{1} & = & \frac{1}{\sqrt{\lambda}}\\ \gamma_{2} & = & \frac{1}{\lambda}.\end{eqnarray*}
.. math::
:nowrap:
\[ M\left(t\right)=\exp\left[\lambda\left(e^{t}-1\right)\right].\]
Geometric
=========
The geometric random variable with parameter :math:`p\in\left(0,1\right)` can be defined as the number of trials required to obtain a success
where the probability of success on each trial is :math:`p` . Thus,
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;p\right) & = & \left(1-p\right)^{k-1}p\quad k\geq1\\ F\left(x;p\right) & = & 1-\left(1-p\right)^{\left\lfloor x\right\rfloor }\quad x\geq1\\ G\left(q;p\right) & = & \left\lceil \frac{\log\left(1-q\right)}{\log\left(1-p\right)}\right\rceil \\ \mu & = & \frac{1}{p}\\ \mu_{2} & = & \frac{1-p}{p^{2}}\\ \gamma_{1} & = & \frac{2-p}{\sqrt{1-p}}\\ \gamma_{2} & = & \frac{p^{2}-6p+6}{1-p}.\end{eqnarray*}
.. math::
:nowrap:
\begin{eqnarray*} M\left(t\right) & = & \frac{p}{e^{-t}-\left(1-p\right)}\end{eqnarray*}
Negative Binomial
=================
The negative binomial random variable with parameters :math:`n` and :math:`p\in\left(0,1\right)` can be defined as the number of *extra* independent trials (beyond :math:`n` ) required to accumulate a total of :math:`n` successes where the probability of a success on each trial is :math:`p.` Equivalently, this random variable is the number of failures
encoutered while accumulating :math:`n` successes during independent trials of an experiment that succeeds
with probability :math:`p.` Thus,
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;n,p\right) & = & \left(\begin{array}{c} k+n-1\\ n-1\end{array}\right)p^{n}\left(1-p\right)^{k}\quad k\geq0\\ F\left(x;n,p\right) & = & \sum_{i=0}^{\left\lfloor x\right\rfloor }\left(\begin{array}{c} i+n-1\\ i\end{array}\right)p^{n}\left(1-p\right)^{i}\quad x\geq0\\ & = & I_{p}\left(n,\left\lfloor x\right\rfloor +1\right)\quad x\geq0\\ \mu & = & n\frac{1-p}{p}\\ \mu_{2} & = & n\frac{1-p}{p^{2}}\\ \gamma_{1} & = & \frac{2-p}{\sqrt{n\left(1-p\right)}}\\ \gamma_{2} & = & \frac{p^{2}+6\left(1-p\right)}{n\left(1-p\right)}.\end{eqnarray*}
Recall that :math:`I_{p}\left(a,b\right)` is the incomplete beta integral.
Hypergeometric
==============
The hypergeometric random variable with parameters :math:`\left(M,n,N\right)` counts the number of "good "objects in a sample of size :math:`N` chosen without replacement from a population of :math:`M` objects where :math:`n` is the number of "good "objects in the total population.
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;N,n,M\right) & = & \frac{\left(\begin{array}{c} n\\ k\end{array}\right)\left(\begin{array}{c} M-n\\ N-k\end{array}\right)}{\left(\begin{array}{c} M\\ N\end{array}\right)}\quad N-\left(M-n\right)\leq k\leq\min\left(n,N\right)\\ F\left(x;N,n,M\right) & = & \sum_{k=0}^{\left\lfloor x\right\rfloor }\frac{\left(\begin{array}{c} m\\ k\end{array}\right)\left(\begin{array}{c} N-m\\ n-k\end{array}\right)}{\left(\begin{array}{c} N\\ n\end{array}\right)},\\ \mu & = & \frac{nN}{M}\\ \mu_{2} & = & \frac{nN\left(M-n\right)\left(M-N\right)}{M^{2}\left(M-1\right)}\\ \gamma_{1} & = & \frac{\left(M-2n\right)\left(M-2N\right)}{M-2}\sqrt{\frac{M-1}{nN\left(M-m\right)\left(M-n\right)}}\\ \gamma_{2} & = & \frac{g\left(N,n,M\right)}{nN\left(M-n\right)\left(M-3\right)\left(M-2\right)\left(N-M\right)}\end{eqnarray*}
where (defining :math:`m=M-n` )
.. math::
:nowrap:
\begin{eqnarray*} g\left(N,n,M\right) & = & m^{3}-m^{5}+3m^{2}n-6m^{3}n+m^{4}n+3mn^{2}\\ & & -12m^{2}n^{2}+8m^{3}n^{2}+n^{3}-6mn^{3}+8m^{2}n^{3}\\ & & +mn^{4}-n^{5}-6m^{3}N+6m^{4}N+18m^{2}nN\\ & & -6m^{3}nN+18mn^{2}N-24m^{2}n^{2}N-6n^{3}N\\ & & -6mn^{3}N+6n^{4}N+6m^{2}N^{2}-6m^{3}N^{2}-24mnN^{2}\\ & & +12m^{2}nN^{2}+6n^{2}N^{2}+12mn^{2}N^{2}-6n^{3}N^{2}.\end{eqnarray*}
Zipf (Zeta)
===========
A random variable has the zeta distribution (also called the zipf
distribution) with parameter :math:`\alpha>1` if it's probability mass function is given by
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;\alpha\right) & = & \frac{1}{\zeta\left(\alpha\right)k^{\alpha}}\quad k\geq1\end{eqnarray*}
where
.. math::
:nowrap:
\[ \zeta\left(\alpha\right)=\sum_{n=1}^{\infty}\frac{1}{n^{\alpha}}\]
is the Riemann zeta function. Other functions of this distribution are
.. math::
:nowrap:
\begin{eqnarray*} F\left(x;\alpha\right) & = & \frac{1}{\zeta\left(\alpha\right)}\sum_{k=1}^{\left\lfloor x\right\rfloor }\frac{1}{k^{\alpha}}\\ \mu & = & \frac{\zeta_{1}}{\zeta_{0}}\quad\alpha>2\\ \mu_{2} & = & \frac{\zeta_{2}\zeta_{0}-\zeta_{1}^{2}}{\zeta_{0}^{2}}\quad\alpha>3\\ \gamma_{1} & = & \frac{\zeta_{3}\zeta_{0}^{2}-3\zeta_{0}\zeta_{1}\zeta_{2}+2\zeta_{1}^{3}}{\left[\zeta_{2}\zeta_{0}-\zeta_{1}^{2}\right]^{3/2}}\quad\alpha>4\\ \gamma_{2} & = & \frac{\zeta_{4}\zeta_{0}^{3}-4\zeta_{3}\zeta_{1}\zeta_{0}^{2}+12\zeta_{2}\zeta_{1}^{2}\zeta_{0}-6\zeta_{1}^{4}-3\zeta_{2}^{2}\zeta_{0}^{2}}{\left(\zeta_{2}\zeta_{0}-\zeta_{1}^{2}\right)^{2}}.\end{eqnarray*}
.. math::
:nowrap:
\begin{eqnarray*} M\left(t\right) & = & \frac{\textrm{Li}_{\alpha}\left(e^{t}\right)}{\zeta\left(\alpha\right)}\end{eqnarray*}
where :math:`\zeta_{i}=\zeta\left(\alpha-i\right)` and :math:`\textrm{Li}_{n}\left(z\right)` is the :math:`n^{\textrm{th}}` polylogarithm function of :math:`z` defined as
.. math::
:nowrap:
\[ \textrm{Li}_{n}\left(z\right)\equiv\sum_{k=1}^{\infty}\frac{z^{k}}{k^{n}}\]
.. math::
:nowrap:
\[ \mu_{n}^{\prime}=\left.M^{\left(n\right)}\left(t\right)\right|_{t=0}=\left.\frac{\textrm{Li}_{\alpha-n}\left(e^{t}\right)}{\zeta\left(a\right)}\right|_{t=0}=\frac{\zeta\left(\alpha-n\right)}{\zeta\left(\alpha\right)}\]
Logarithmic (Log-Series, Series)
================================
The logarimthic distribution with parameter :math:`p` has a probability mass function with terms proportional to the Taylor
series expansion of :math:`\log\left(1-p\right)`
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;p\right) & = & -\frac{p^{k}}{k\log\left(1-p\right)}\quad k\geq1\\ F\left(x;p\right) & = & -\frac{1}{\log\left(1-p\right)}\sum_{k=1}^{\left\lfloor x\right\rfloor }\frac{p^{k}}{k}=1+\frac{p^{1+\left\lfloor x\right\rfloor }\Phi\left(p,1,1+\left\lfloor x\right\rfloor \right)}{\log\left(1-p\right)}\end{eqnarray*}
where
.. math::
:nowrap:
\[ \Phi\left(z,s,a\right)=\sum_{k=0}^{\infty}\frac{z^{k}}{\left(a+k\right)^{s}}\]
is the Lerch Transcendent. Also define :math:`r=\log\left(1-p\right)`
.. math::
:nowrap:
\begin{eqnarray*} \mu & = & -\frac{p}{\left(1-p\right)r}\\ \mu_{2} & = & -\frac{p\left[p+r\right]}{\left(1-p\right)^{2}r^{2}}\\ \gamma_{1} & = & -\frac{2p^{2}+3pr+\left(1+p\right)r^{2}}{r\left(p+r\right)\sqrt{-p\left(p+r\right)}}r\\ \gamma_{2} & = & -\frac{6p^{3}+12p^{2}r+p\left(4p+7\right)r^{2}+\left(p^{2}+4p+1\right)r^{3}}{p\left(p+r\right)^{2}}.\end{eqnarray*}
.. math::
:nowrap:
\begin{eqnarray*} M\left(t\right) & = & -\frac{1}{\log\left(1-p\right)}\sum_{k=1}^{\infty}\frac{e^{tk}p^{k}}{k}\\ & = & \frac{\log\left(1-pe^{t}\right)}{\log\left(1-p\right)}\end{eqnarray*}
Thus,
.. math::
:nowrap:
\[ \mu_{n}^{\prime}=\left.M^{\left(n\right)}\left(t\right)\right|_{t=0}=\left.\frac{\textrm{Li}_{1-n}\left(pe^{t}\right)}{\log\left(1-p\right)}\right|_{t=0}=-\frac{\textrm{Li}_{1-n}\left(p\right)}{\log\left(1-p\right)}.\]
Discrete Uniform (randint)
==========================
The discrete uniform distribution with parameters :math:`\left(a,b\right)` constructs a random variable that has an equal probability of being
any one of the integers in the half-open range :math:`[a,b).` If :math:`a` is not given it is assumed to be zero and the only parameter is :math:`b.` Therefore,
.. math::
:nowrap:
\begin{eqnarray*} p\left(k;a,b\right) & = & \frac{1}{b-a}\quad a\leq k<b\\ F\left(x;a,b\right) & = & \frac{\left\lfloor x\right\rfloor -a}{b-a}\quad a\leq x\leq b\\ G\left(q;a,b\right) & = & \left\lceil q\left(b-a\right)+a\right\rceil \\ \mu & = & \frac{b+a-1}{2}\\ \mu_{2} & = & \frac{\left(b-a-1\right)\left(b-a+1\right)}{12}\\ \gamma_{1} & = & 0\\ \gamma_{2} & = & -\frac{6}{5}\frac{\left(b-a\right)^{2}+1}{\left(b-a-1\right)\left(b-a+1\right)}.\end{eqnarray*}
.. math::
:nowrap:
\begin{eqnarray*} M\left(t\right) & = & \frac{1}{b-a}\sum_{k=a}^{b-1}e^{tk}\\ & = & \frac{e^{bt}-e^{at}}{\left(b-a\right)\left(e^{t}-1\right)}\end{eqnarray*}
Discrete Laplacian
==================
Defined over all integers for :math:`a>0`
.. math::
:nowrap:
\begin{eqnarray*} p\left(k\right) & = & \tanh\left(\frac{a}{2}\right)e^{-a\left|k\right|},\\ F\left(x\right) & = & \left\{ \begin{array}{cc} \frac{e^{a\left(\left\lfloor x\right\rfloor +1\right)}}{e^{a}+1} & \left\lfloor x\right\rfloor <0,\\ 1-\frac{e^{-a\left\lfloor x\right\rfloor }}{e^{a}+1} & \left\lfloor x\right\rfloor \geq0.\end{array}\right.\\ G\left(q\right) & = & \left\{ \begin{array}{cc} \left\lceil \frac{1}{a}\log\left[q\left(e^{a}+1\right)\right]-1\right\rceil & q<\frac{1}{1+e^{-a}},\\ \left\lceil -\frac{1}{a}\log\left[\left(1-q\right)\left(1+e^{a}\right)\right]\right\rceil & q\geq\frac{1}{1+e^{-a}}.\end{array}\right.\end{eqnarray*}
.. math::
:nowrap:
\begin{eqnarray*} M\left(t\right) & = & \tanh\left(\frac{a}{2}\right)\sum_{k=-\infty}^{\infty}e^{tk}e^{-a\left|k\right|}\\ & = & C\left(1+\sum_{k=1}^{\infty}e^{-\left(t+a\right)k}+\sum_{1}^{\infty}e^{\left(t-a\right)k}\right)\\ & = & \tanh\left(\frac{a}{2}\right)\left(1+\frac{e^{-\left(t+a\right)}}{1-e^{-\left(t+a\right)}}+\frac{e^{t-a}}{1-e^{t-a}}\right)\\ & = & \frac{\tanh\left(\frac{a}{2}\right)\sinh a}{\cosh a-\cosh t}.\end{eqnarray*}
Thus,
.. math::
:nowrap:
\[ \mu_{n}^{\prime}=M^{\left(n\right)}\left(0\right)=\left[1+\left(-1\right)^{n}\right]\textrm{Li}_{-n}\left(e^{-a}\right)\]
where :math:`\textrm{Li}_{-n}\left(z\right)` is the polylogarithm function of order :math:`-n` evaluated at :math:`z.`
.. math::
:nowrap:
\[ h\left[X\right]=-\log\left(\tanh\left(\frac{a}{2}\right)\right)+\frac{a}{\sinh a}\]
Discrete Gaussian*
==================
Defined for all :math:`\mu` and :math:`\lambda>0` and :math:`k`
.. math::
:nowrap:
\[ p\left(k;\mu,\lambda\right)=\frac{1}{Z\left(\lambda\right)}\exp\left[-\lambda\left(k-\mu\right)^{2}\right]\]
where
.. math::
:nowrap:
\[ Z\left(\lambda\right)=\sum_{k=-\infty}^{\infty}\exp\left[-\lambda k^{2}\right]\]
.. math::
:nowrap:
\begin{eqnarray*} \mu & = & \mu\\ \mu_{2} & = & -\frac{\partial}{\partial\lambda}\log Z\left(\lambda\right)\\ & = & G\left(\lambda\right)e^{-\lambda}\end{eqnarray*}
where :math:`G\left(0\right)\rightarrow\infty` and :math:`G\left(\infty\right)\rightarrow2` with a minimum less than 2 near :math:`\lambda=1`
.. math::
:nowrap:
\[ G\left(\lambda\right)=\frac{1}{Z\left(\lambda\right)}\sum_{k=-\infty}^{\infty}k^{2}\exp\left[-\lambda\left(k+1\right)\left(k-1\right)\right]\]
|