File: bench_basic.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (233 lines) | stat: -rw-r--r-- 7,894 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
""" Test functions for fftpack.basic module
"""

from __future__ import division, print_function, absolute_import

import sys
from numpy.testing import *
from scipy.fftpack import ifft, fft, fftn, irfft, rfft

from numpy import arange, asarray, zeros, dot, exp, pi, double, cdouble
import numpy.fft

from numpy.random import rand


def random(size):
    return rand(*size)


def direct_dft(x):
    x = asarray(x)
    n = len(x)
    y = zeros(n,dtype=cdouble)
    w = -arange(n)*(2j*pi/n)
    for i in range(n):
        y[i] = dot(exp(i*w),x)
    return y


def direct_idft(x):
    x = asarray(x)
    n = len(x)
    y = zeros(n,dtype=cdouble)
    w = arange(n)*(2j*pi/n)
    for i in range(n):
        y[i] = dot(exp(i*w),x)/n
    return y


class TestFft(TestCase):

    def bench_random(self):
        from numpy.fft import fft as numpy_fft
        print()
        print('                 Fast Fourier Transform')
        print('=================================================')
        print('      |    real input     |   complex input    ')
        print('-------------------------------------------------')
        print(' size |  scipy  |  numpy  |  scipy  |  numpy ')
        print('-------------------------------------------------')
        for size,repeat in [(100,7000),(1000,2000),
                            (256,10000),
                            (512,10000),
                            (1024,1000),
                            (2048,1000),
                            (2048*2,500),
                            (2048*4,500),
                            ]:
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            for x in [random([size]).astype(double),
                      random([size]).astype(cdouble)+random([size]).astype(cdouble)*1j
                      ]:
                if size > 500:
                    y = fft(x)
                else:
                    y = direct_dft(x)
                assert_array_almost_equal(fft(x),y)
                print('|%8.2f' % measure('fft(x)',repeat), end=' ')
                sys.stdout.flush()

                assert_array_almost_equal(numpy_fft(x),y)
                print('|%8.2f' % measure('numpy_fft(x)',repeat), end=' ')
                sys.stdout.flush()

            print(' (secs for %s calls)' % (repeat))
        sys.stdout.flush()


class TestIfft(TestCase):

    def bench_random(self):
        from numpy.fft import ifft as numpy_ifft
        print()
        print('       Inverse Fast Fourier Transform')
        print('===============================================')
        print('      |     real input    |    complex input   ')
        print('-----------------------------------------------')
        print(' size |  scipy  |  numpy  |  scipy  |  numpy  ')
        print('-----------------------------------------------')
        for size,repeat in [(100,7000),(1000,2000),
                            (256,10000),
                            (512,10000),
                            (1024,1000),
                            (2048,1000),
                            (2048*2,500),
                            (2048*4,500),
                            ]:
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            for x in [random([size]).astype(double),
                      random([size]).astype(cdouble)+random([size]).astype(cdouble)*1j
                      ]:
                if size > 500:
                    y = ifft(x)
                else:
                    y = direct_idft(x)
                assert_array_almost_equal(ifft(x),y)
                print('|%8.2f' % measure('ifft(x)',repeat), end=' ')
                sys.stdout.flush()

                assert_array_almost_equal(numpy_ifft(x),y)
                print('|%8.2f' % measure('numpy_ifft(x)',repeat), end=' ')
                sys.stdout.flush()

            print(' (secs for %s calls)' % (repeat))
        sys.stdout.flush()


class TestRfft(TestCase):

    def bench_random(self):
        from numpy.fft import rfft as numpy_rfft
        print()
        print('Fast Fourier Transform (real data)')
        print('==================================')
        print(' size |  scipy  |  numpy  ')
        print('----------------------------------')
        for size,repeat in [(100,7000),(1000,2000),
                            (256,10000),
                            (512,10000),
                            (1024,1000),
                            (2048,1000),
                            (2048*2,500),
                            (2048*4,500),
                            ]:
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            x = random([size]).astype(double)
            print('|%8.2f' % measure('rfft(x)',repeat), end=' ')
            sys.stdout.flush()

            print('|%8.2f' % measure('numpy_rfft(x)',repeat), end=' ')
            sys.stdout.flush()

            print(' (secs for %s calls)' % (repeat))
        sys.stdout.flush()


class TestIrfft(TestCase):

    def bench_random(self):
        from numpy.fft import irfft as numpy_irfft

        print()
        print('Inverse Fast Fourier Transform (real data)')
        print('==================================')
        print(' size |  scipy  |  numpy  ')
        print('----------------------------------')
        for size,repeat in [(100,7000),(1000,2000),
                            (256,10000),
                            (512,10000),
                            (1024,1000),
                            (2048,1000),
                            (2048*2,500),
                            (2048*4,500),
                            ]:
            print('%5s' % size, end=' ')
            sys.stdout.flush()

            x = random([size]).astype(double)
            x1 = zeros(size/2+1,dtype=cdouble)
            x1[0] = x[0]
            for i in range(1,size/2):
                x1[i] = x[2*i-1] + 1j * x[2*i]
            if not size % 2:
                x1[-1] = x[-1]
            y = irfft(x)

            print('|%8.2f' % measure('irfft(x)',repeat), end=' ')
            sys.stdout.flush()

            assert_array_almost_equal(numpy_irfft(x1,size),y)
            print('|%8.2f' % measure('numpy_irfft(x1,size)',repeat), end=' ')
            sys.stdout.flush()

            print(' (secs for %s calls)' % (repeat))

        sys.stdout.flush()


class TestFftn(TestCase):

    def bench_random(self):
        from numpy.fft import fftn as numpy_fftn
        print()
        print('    Multi-dimensional Fast Fourier Transform')
        print('===================================================')
        print('          |    real input     |   complex input    ')
        print('---------------------------------------------------')
        print('   size   |  scipy  |  numpy  |  scipy  |  numpy ')
        print('---------------------------------------------------')
        for size,repeat in [((100,100),100),((1000,100),7),
                            ((256,256),10),
                            ((512,512),3),
                            ]:
            print('%9s' % ('%sx%s' % size), end=' ')
            sys.stdout.flush()

            for x in [random(size).astype(double),
                      random(size).astype(cdouble)+random(size).astype(cdouble)*1j
                      ]:
                y = fftn(x)
                #if size > 500: y = fftn(x)
                #else: y = direct_dft(x)
                assert_array_almost_equal(fftn(x),y)
                print('|%8.2f' % measure('fftn(x)',repeat), end=' ')
                sys.stdout.flush()

                assert_array_almost_equal(numpy_fftn(x),y)
                print('|%8.2f' % measure('numpy_fftn(x)',repeat), end=' ')
                sys.stdout.flush()

            print(' (secs for %s calls)' % (repeat))

        sys.stdout.flush()


if __name__ == "__main__":
    run_module_suite()