1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
""" Benchmark functions for fftpack.pseudo_diffs module
"""
from __future__ import division, print_function, absolute_import
import sys
from numpy import arange, sin, cos, pi, exp, tanh, sign
from numpy.testing import *
from scipy.fftpack import diff, fft, ifft, tilbert, hilbert, shift, fftfreq
def random(size):
return rand(*size)
def direct_diff(x,k=1,period=None):
fx = fft(x)
n = len(fx)
if period is None:
period = 2*pi
w = fftfreq(n)*2j*pi/period*n
if k < 0:
w = 1 / w**k
w[0] = 0.0
else:
w = w**k
if n > 2000:
w[250:n-250] = 0.0
return ifft(w*fx).real
def direct_tilbert(x,h=1,period=None):
fx = fft(x)
n = len(fx)
if period is None:
period = 2*pi
w = fftfreq(n)*h*2*pi/period*n
w[0] = 1
w = 1j/tanh(w)
w[0] = 0j
return ifft(w*fx)
def direct_hilbert(x):
fx = fft(x)
n = len(fx)
w = fftfreq(n)*n
w = 1j*sign(w)
return ifft(w*fx)
def direct_shift(x,a,period=None):
n = len(x)
if period is None:
k = fftfreq(n)*1j*n
else:
k = fftfreq(n)*2j*pi/period*n
return ifft(fft(x)*exp(k*a)).real
class TestDiff(TestCase):
def bench_random(self):
print()
print('Differentiation of periodic functions')
print('=====================================')
print(' size | convolve | naive')
print('-------------------------------------')
for size,repeat in [(100,1500),(1000,300),
(256,1500),
(512,1000),
(1024,500),
(2048,200),
(2048*2,100),
(2048*4,50),
]:
print('%6s' % size, end=' ')
sys.stdout.flush()
x = arange(size)*2*pi/size
if size < 2000:
f = sin(x)*cos(4*x)+exp(sin(3*x))
else:
f = sin(x)*cos(4*x)
assert_array_almost_equal(diff(f,1),direct_diff(f,1))
assert_array_almost_equal(diff(f,2),direct_diff(f,2))
print('| %9.2f' % measure('diff(f,3)',repeat), end=' ')
sys.stdout.flush()
print('| %9.2f' % measure('direct_diff(f,3)',repeat), end=' ')
sys.stdout.flush()
print(' (secs for %s calls)' % (repeat))
class TestTilbert(TestCase):
def bench_random(self):
print()
print(' Tilbert transform of periodic functions')
print('=========================================')
print(' size | optimized | naive')
print('-----------------------------------------')
for size,repeat in [(100,1500),(1000,300),
(256,1500),
(512,1000),
(1024,500),
(2048,200),
(2048*2,100),
(2048*4,50),
]:
print('%6s' % size, end=' ')
sys.stdout.flush()
x = arange(size)*2*pi/size
if size < 2000:
f = sin(x)*cos(4*x)+exp(sin(3*x))
else:
f = sin(x)*cos(4*x)
assert_array_almost_equal(tilbert(f,1),direct_tilbert(f,1))
print('| %9.2f' % measure('tilbert(f,1)',repeat), end=' ')
sys.stdout.flush()
print('| %9.2f' % measure('direct_tilbert(f,1)',repeat), end=' ')
sys.stdout.flush()
print(' (secs for %s calls)' % (repeat))
class TestHilbert(TestCase):
def bench_random(self):
print()
print(' Hilbert transform of periodic functions')
print('=========================================')
print(' size | optimized | naive')
print('-----------------------------------------')
for size,repeat in [(100,1500),(1000,300),
(256,1500),
(512,1000),
(1024,500),
(2048,200),
(2048*2,100),
(2048*4,50),
]:
print('%6s' % size, end=' ')
sys.stdout.flush()
x = arange(size)*2*pi/size
if size < 2000:
f = sin(x)*cos(4*x)+exp(sin(3*x))
else:
f = sin(x)*cos(4*x)
assert_array_almost_equal(hilbert(f),direct_hilbert(f))
print('| %9.2f' % measure('hilbert(f)',repeat), end=' ')
sys.stdout.flush()
print('| %9.2f' % measure('direct_hilbert(f)',repeat), end=' ')
sys.stdout.flush()
print(' (secs for %s calls)' % (repeat))
class TestShift(TestCase):
def bench_random(self):
print()
print(' Shifting periodic functions')
print('==============================')
print(' size | optimized | naive')
print('------------------------------')
for size,repeat in [(100,1500),(1000,300),
(256,1500),
(512,1000),
(1024,500),
(2048,200),
(2048*2,100),
(2048*4,50),
]:
print('%6s' % size, end=' ')
sys.stdout.flush()
x = arange(size)*2*pi/size
a = 1
if size < 2000:
f = sin(x)*cos(4*x)+exp(sin(3*x))
sf = sin(x+a)*cos(4*(x+a))+exp(sin(3*(x+a)))
else:
f = sin(x)*cos(4*x)
sf = sin(x+a)*cos(4*(x+a))
assert_array_almost_equal(direct_shift(f,1),sf)
assert_array_almost_equal(shift(f,1),sf)
print('| %9.2f' % measure('shift(f,a)',repeat), end=' ')
sys.stdout.flush()
print('| %9.2f' % measure('direct_shift(f,a)',repeat), end=' ')
sys.stdout.flush()
print(' (secs for %s calls)' % (repeat))
if __name__ == "__main__":
run_module_suite()
|