1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
subroutine zgbsl(abd,lda,n,ml,mu,ipvt,b,job)
integer lda,n,ml,mu,ipvt(1),job
complex*16 abd(lda,1),b(1)
c
c zgbsl solves the complex*16 band system
c a * x = b or ctrans(a) * x = b
c using the factors computed by zgbco or zgbfa.
c
c on entry
c
c abd complex*16(lda, n)
c the output from zgbco or zgbfa.
c
c lda integer
c the leading dimension of the array abd .
c
c n integer
c the order of the original matrix.
c
c ml integer
c number of diagonals below the main diagonal.
c
c mu integer
c number of diagonals above the main diagonal.
c
c ipvt integer(n)
c the pivot vector from zgbco or zgbfa.
c
c b complex*16(n)
c the right hand side vector.
c
c job integer
c = 0 to solve a*x = b ,
c = nonzero to solve ctrans(a)*x = b , where
c ctrans(a) is the conjugate transpose.
c
c on return
c
c b the solution vector x .
c
c error condition
c
c a division by zero will occur if the input factor contains a
c zero on the diagonal. technically this indicates singularity
c but it is often caused by improper arguments or improper
c setting of lda . it will not occur if the subroutines are
c called correctly and if zgbco has set rcond .gt. 0.0
c or zgbfa has set info .eq. 0 .
c
c to compute inverse(a) * c where c is a matrix
c with p columns
c call zgbco(abd,lda,n,ml,mu,ipvt,rcond,z)
c if (rcond is too small) go to ...
c do 10 j = 1, p
c call zgbsl(abd,lda,n,ml,mu,ipvt,c(1,j),0)
c 10 continue
c
c linpack. this version dated 08/14/78 .
c cleve moler, university of new mexico, argonne national lab.
c
c subroutines and functions
c
c blas zaxpy,zdotc
c fortran dconjg,min0
c
c internal variables
c
complex*16 zdotc,t
integer k,kb,l,la,lb,lm,m,nm1
double precision dreal,dimag
complex*16 zdumr,zdumi
dreal(zdumr) = zdumr
dimag(zdumi) = (0.0d0,-1.0d0)*zdumi
c
m = mu + ml + 1
nm1 = n - 1
if (job .ne. 0) go to 50
c
c job = 0 , solve a * x = b
c first solve l*y = b
c
if (ml .eq. 0) go to 30
if (nm1 .lt. 1) go to 30
do 20 k = 1, nm1
lm = min0(ml,n-k)
l = ipvt(k)
t = b(l)
if (l .eq. k) go to 10
b(l) = b(k)
b(k) = t
10 continue
call zaxpy(lm,t,abd(m+1,k),1,b(k+1),1)
20 continue
30 continue
c
c now solve u*x = y
c
do 40 kb = 1, n
k = n + 1 - kb
b(k) = b(k)/abd(m,k)
lm = min0(k,m) - 1
la = m - lm
lb = k - lm
t = -b(k)
call zaxpy(lm,t,abd(la,k),1,b(lb),1)
40 continue
go to 100
50 continue
c
c job = nonzero, solve ctrans(a) * x = b
c first solve ctrans(u)*y = b
c
do 60 k = 1, n
lm = min0(k,m) - 1
la = m - lm
lb = k - lm
t = zdotc(lm,abd(la,k),1,b(lb),1)
b(k) = (b(k) - t)/dconjg(abd(m,k))
60 continue
c
c now solve ctrans(l)*x = y
c
if (ml .eq. 0) go to 90
if (nm1 .lt. 1) go to 90
do 80 kb = 1, nm1
k = n - kb
lm = min0(ml,n-k)
b(k) = b(k) + zdotc(lm,abd(m+1,k),1,b(k+1),1)
l = ipvt(k)
if (l .eq. k) go to 70
t = b(l)
b(l) = b(k)
b(k) = t
70 continue
80 continue
90 continue
100 continue
return
end
|