File: zgbsl.f

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (139 lines) | stat: -rw-r--r-- 3,910 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
      subroutine zgbsl(abd,lda,n,ml,mu,ipvt,b,job)
      integer lda,n,ml,mu,ipvt(1),job
      complex*16 abd(lda,1),b(1)
c
c     zgbsl solves the complex*16 band system
c     a * x = b  or  ctrans(a) * x = b
c     using the factors computed by zgbco or zgbfa.
c
c     on entry
c
c        abd     complex*16(lda, n)
c                the output from zgbco or zgbfa.
c
c        lda     integer
c                the leading dimension of the array  abd .
c
c        n       integer
c                the order of the original matrix.
c
c        ml      integer
c                number of diagonals below the main diagonal.
c
c        mu      integer
c                number of diagonals above the main diagonal.
c
c        ipvt    integer(n)
c                the pivot vector from zgbco or zgbfa.
c
c        b       complex*16(n)
c                the right hand side vector.
c
c        job     integer
c                = 0         to solve  a*x = b ,
c                = nonzero   to solve  ctrans(a)*x = b , where
c                            ctrans(a)  is the conjugate transpose.
c
c     on return
c
c        b       the solution vector  x .
c
c     error condition
c
c        a division by zero will occur if the input factor contains a
c        zero on the diagonal.  technically this indicates singularity
c        but it is often caused by improper arguments or improper
c        setting of lda .  it will not occur if the subroutines are
c        called correctly and if zgbco has set rcond .gt. 0.0
c        or zgbfa has set info .eq. 0 .
c
c     to compute  inverse(a) * c  where  c  is a matrix
c     with  p  columns
c           call zgbco(abd,lda,n,ml,mu,ipvt,rcond,z)
c           if (rcond is too small) go to ...
c           do 10 j = 1, p
c              call zgbsl(abd,lda,n,ml,mu,ipvt,c(1,j),0)
c        10 continue
c
c     linpack. this version dated 08/14/78 .
c     cleve moler, university of new mexico, argonne national lab.
c
c     subroutines and functions
c
c     blas zaxpy,zdotc
c     fortran dconjg,min0
c
c     internal variables
c
      complex*16 zdotc,t
      integer k,kb,l,la,lb,lm,m,nm1
      double precision dreal,dimag
      complex*16 zdumr,zdumi
      dreal(zdumr) = zdumr
      dimag(zdumi) = (0.0d0,-1.0d0)*zdumi
c
      m = mu + ml + 1
      nm1 = n - 1
      if (job .ne. 0) go to 50
c
c        job = 0 , solve  a * x = b
c        first solve l*y = b
c
         if (ml .eq. 0) go to 30
         if (nm1 .lt. 1) go to 30
            do 20 k = 1, nm1
               lm = min0(ml,n-k)
               l = ipvt(k)
               t = b(l)
               if (l .eq. k) go to 10
                  b(l) = b(k)
                  b(k) = t
   10          continue
               call zaxpy(lm,t,abd(m+1,k),1,b(k+1),1)
   20       continue
   30    continue
c
c        now solve  u*x = y
c
         do 40 kb = 1, n
            k = n + 1 - kb
            b(k) = b(k)/abd(m,k)
            lm = min0(k,m) - 1
            la = m - lm
            lb = k - lm
            t = -b(k)
            call zaxpy(lm,t,abd(la,k),1,b(lb),1)
   40    continue
      go to 100
   50 continue
c
c        job = nonzero, solve  ctrans(a) * x = b
c        first solve  ctrans(u)*y = b
c
         do 60 k = 1, n
            lm = min0(k,m) - 1
            la = m - lm
            lb = k - lm
            t = zdotc(lm,abd(la,k),1,b(lb),1)
            b(k) = (b(k) - t)/dconjg(abd(m,k))
   60    continue
c
c        now solve ctrans(l)*x = y
c
         if (ml .eq. 0) go to 90
         if (nm1 .lt. 1) go to 90
            do 80 kb = 1, nm1
               k = n - kb
               lm = min0(ml,n-k)
               b(k) = b(k) + zdotc(lm,abd(m+1,k),1,b(k+1),1)
               l = ipvt(k)
               if (l .eq. k) go to 70
                  t = b(l)
                  b(l) = b(k)
                  b(k) = t
   70          continue
   80       continue
   90    continue
  100 continue
      return
      end