File: bench_memusage.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (157 lines) | stat: -rw-r--r-- 4,573 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Posix-only benchmark
from __future__ import division, absolute_import, print_function

import os
import sys
import re
import subprocess
import time
import textwrap
import tempfile
import warnings

from numpy.testing import dec

import numpy as np
from scipy.io import savemat, loadmat


@dec.skipif(not sys.platform.startswith('linux'), "Memory benchmark works only on Linux")
def bench_run():
    mem_info = get_mem_info()
    set_mem_rlimit(int(mem_info['memtotal'] * 0.7))

    # Setup temp file, make it fit in memory
    f = tempfile.NamedTemporaryFile(suffix='.mat')
    os.unlink(f.name)

    max_size = int(mem_info['memtotal'] * 0.7)//4
    sizes = [1e6, 10e6, 100e6, 300e6, 500e6, 1000e6]

    print_table_row(['** loadmat benchmark'])
    print_table_row(['size (MB)', 'compression', 'time (s)',
                     'peak memory (MB)', 'mem factor'])

    for size in sizes:
        for compressed in (False, True):
            if size > max_size:
                print_table_row(["%.1f" % (size/1e6,), compressed, "SKIP"])
                continue

            try:
                x = np.random.rand(size//8).view(dtype=np.uint8)
                savemat(f.name, dict(x=x), do_compression=compressed, oned_as='row')
                del x
            except MemoryError:
                x = None
                print_table_row(["%.1f" % (size/1e6,), compressed, "FAIL"])
                continue

            code = """
            from scipy.io import loadmat
            loadmat('%s')
            """ % (f.name,)
            time, peak_mem = run_monitored(code)

            print_table_row(["%.1f" % (size/1e6,), compressed, time,
                             "%.1f" % (peak_mem/1e6,),
                             "%.2f x" % (peak_mem/size,)])

    print_table_row(['** savemat memory benchmark'])
    print_table_row(['size (MB)', 'compression', 'time (s)',
                     'peak memory (MB)', 'mem factor'])

    for size in sizes:
        for compressed in (False, True):
            if size > max_size:
                print_table_row(["%.1f" % (size/1e6,), compressed, "SKIP"])
                continue

            code = """
            import numpy as np
            from scipy.io import savemat
            x = np.random.rand(%d//8).view(dtype=np.uint8)
            savemat('%s', dict(x=x), do_compression=%r, oned_as='row')
            """ % (size, f.name, compressed)
            try:
                time, peak_mem = run_monitored(code)
            except AssertionError:
                print_table_row(["%.1f" % (size/1e6,), compressed, "FAIL"])
                continue

            print_table_row(["%.1f" % (size/1e6,), compressed, time,
                             "%.1f" % (peak_mem/1e6,),
                             "%.2f x" % (peak_mem/size,)])


def print_table_row(columns):
    print(" | ".join("%-20s" % x for x in columns))


def run_monitored(code):
    """
    Run code in a new Python process, and monitor peak memory usage.

    Returns
    -------
    duration : float
        Duration in seconds (including Python startup time)
    peak_memusage : float
        Peak memory usage (rough estimate only) in bytes

    """
    code = textwrap.dedent(code)
    process = subprocess.Popen([sys.executable, '-c', code])

    peak_memusage = -1

    start = time.time()
    while True:
        ret = process.poll()
        if ret is not None:
            break

        with open('/proc/%d/status' % process.pid, 'r') as f:
            procdata = f.read()

        m = re.search('VmRSS:\s*(\d+)\s*kB', procdata, re.S | re.I)
        if m is not None:
            memusage = float(m.group(1)) * 1e3
            peak_memusage = max(memusage, peak_memusage)

        time.sleep(0.01)

    process.wait()

    duration = time.time() - start

    if process.returncode != 0:
        raise AssertionError("Running failed:\n%s" % code)

    return duration, peak_memusage


def get_mem_info():
    """Get information about available memory"""
    info = {}
    with open('/proc/meminfo', 'r') as f:
        for line in f:
            p = line.split()
            info[p[0].strip(':').lower()] = float(p[1]) * 1e3
    return info


def set_mem_rlimit(max_mem):
    """
    Set rlimit to 80% of total system memory, to avoid grinding halt
    because of swapping.
    """
    import resource
    cur_limit = resource.getrlimit(resource.RLIMIT_AS)
    if cur_limit[0] > 0:
        max_mem = min(max_mem, cur_limit[0])

    resource.setrlimit(resource.RLIMIT_AS, (max_mem, cur_limit[1]))

if __name__ == "__main__":
    bench_run()