1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956
|
''' Cython mio5 utility routines (-*- python -*- like)
'''
'''
Programmer's notes
------------------
Routines here have been reasonably optimized.
The char matrix reading is not very fast, but it's not usually a
bottleneck. See comments in ``read_char`` for possible ways to go if you
want to optimize.
'''
import sys
from copy import copy as pycopy
from libc.stdlib cimport calloc, free
from libc.string cimport strcmp, strlen
from cpython cimport Py_INCREF, Py_DECREF
from cpython cimport PyObject
cdef extern from "Python.h":
ctypedef struct PyTypeObject:
pass
from cpython cimport PyBytes_Size, PyBytes_FromString, \
PyBytes_FromStringAndSize
import numpy as np
from numpy.compat import asbytes, asstr
cimport numpy as cnp
cdef extern from "numpy/arrayobject.h":
PyTypeObject PyArray_Type
cnp.ndarray PyArray_NewFromDescr(PyTypeObject *subtype,
cnp.dtype newdtype,
int nd,
cnp.npy_intp* dims,
cnp.npy_intp* strides,
void* data,
int flags,
object parent)
cdef extern from "numpy_rephrasing.h":
void PyArray_Set_BASE(cnp.ndarray arr, object obj)
# Numpy must be initialized before any code using the numpy C-API
# directly
cnp.import_array()
# Constant from numpy - max number of array dimensions
DEF _MAT_MAXDIMS = 32
# max number of integer indices of matlab data types (miINT8 etc)
DEF _N_MIS = 20
# max number of integer indices of matlab class types (mxINT8_CLASS etc)
DEF _N_MXS = 20
cimport streams
import scipy.io.matlab.miobase as miob
from scipy.io.matlab.mio_utils import squeeze_element, chars_to_strings
import scipy.io.matlab.mio5_params as mio5p
import scipy.sparse
cdef enum:
miINT8 = 1
miUINT8 = 2
miINT16 = 3
miUINT16 = 4
miINT32 = 5
miUINT32 = 6
miSINGLE = 7
miDOUBLE = 9
miINT64 = 12
miUINT64 = 13
miMATRIX = 14
miCOMPRESSED = 15
miUTF8 = 16
miUTF16 = 17
miUTF32 = 18
cdef enum: # see comments in mio5_params
mxCELL_CLASS = 1
mxSTRUCT_CLASS = 2
mxOBJECT_CLASS = 3
mxCHAR_CLASS = 4
mxSPARSE_CLASS = 5
mxDOUBLE_CLASS = 6
mxSINGLE_CLASS = 7
mxINT8_CLASS = 8
mxUINT8_CLASS = 9
mxINT16_CLASS = 10
mxUINT16_CLASS = 11
mxINT32_CLASS = 12
mxUINT32_CLASS = 13
mxINT64_CLASS = 14
mxUINT64_CLASS = 15
mxFUNCTION_CLASS = 16
mxOPAQUE_CLASS = 17 # This appears to be a function workspace
mxOBJECT_CLASS_FROM_MATRIX_H = 18
sys_is_le = sys.byteorder == 'little'
native_code = sys_is_le and '<' or '>'
swapped_code = sys_is_le and '>' or '<'
cdef cnp.dtype OPAQUE_DTYPE = mio5p.OPAQUE_DTYPE
cpdef cnp.uint32_t byteswap_u4(cnp.uint32_t u4):
return ((u4 << 24) |
((u4 << 8) & 0xff0000U) |
((u4 >> 8 & 0xff00u)) |
(u4 >> 24))
cdef class VarHeader5:
cdef readonly object name
cdef readonly int mclass
cdef readonly object dims
cdef cnp.int32_t dims_ptr[_MAT_MAXDIMS]
cdef int n_dims
cdef int check_stream_limit
cdef int is_complex
cdef readonly int is_logical
cdef public int is_global
cdef size_t nzmax
def set_dims(self, dims):
""" Allow setting of dimensions from python
This is for constructing headers for tests
"""
self.dims = dims
self.n_dims = len(dims)
for i, dim in enumerate(dims):
self.dims_ptr[i] = <cnp.int32_t>int(dim)
cdef class VarReader5:
cdef public int is_swapped, little_endian
cdef int struct_as_record
cdef object codecs, uint16_codec
# c-optimized version of reading stream
cdef streams.GenericStream cstream
# pointers to stuff in preader.dtypes
cdef PyObject* dtypes[_N_MIS]
# pointers to stuff in preader.class_dtypes
cdef PyObject* class_dtypes[_N_MXS]
# cached here for convenience in later array creation
cdef cnp.dtype bool_dtype
# element processing options
cdef:
int mat_dtype
int squeeze_me
int chars_as_strings
""" Initialize from file reader object
preader needs the following fields defined:
* mat_stream (file-like)
* byte_order (str)
* uint16_codec (str)
* struct_as_record (bool)
* chars_as_strings (bool)
* mat_dtype (bool)
* squeeze_me (bool)
"""
def __cinit__(self, preader):
byte_order = preader.byte_order
self.is_swapped = byte_order == swapped_code
if self.is_swapped:
self.little_endian = not sys_is_le
else:
self.little_endian = sys_is_le
# option affecting reading of matlab struct arrays
self.struct_as_record = preader.struct_as_record
# store codecs for text matrix reading
self.codecs = mio5p.MDTYPES[byte_order]['codecs'].copy()
self.uint16_codec = preader.uint16_codec
uint16_codec = self.uint16_codec
# Set length of miUINT16 char encoding
self.codecs['uint16_len'] = len(" ".encode(uint16_codec)) \
- len(" ".encode(uint16_codec))
self.codecs['uint16_codec'] = uint16_codec
# set c-optimized stream object from python file-like object
self.set_stream(preader.mat_stream)
# options for element processing
self.mat_dtype = preader.mat_dtype
self.chars_as_strings = preader.chars_as_strings
self.squeeze_me = preader.squeeze_me
# copy refs to dtypes into object pointer array. We only need the
# integer-keyed dtypes
for key, dt in mio5p.MDTYPES[byte_order]['dtypes'].items():
if isinstance(key, str):
continue
self.dtypes[key] = <PyObject*>dt
# copy refs to class_dtypes into object pointer array
for key, dt in mio5p.MDTYPES[byte_order]['classes'].items():
if isinstance(key, str):
continue
self.class_dtypes[key] = <PyObject*>dt
self.bool_dtype = np.dtype('bool')
def set_stream(self, fobj):
''' Set stream of best type from file-like `fobj`
Called from Python when initiating a variable read
'''
self.cstream = streams.make_stream(fobj)
def read_tag(self):
''' Read tag mdtype and byte_count
Does necessary swapping and takes account of SDE formats.
See also ``read_full_tag`` method.
Returns
-------
mdtype : int
matlab data type code
byte_count : int
number of bytes following that comprise the data
tag_data : None or str
Any data from the tag itself. This is None for a full tag,
and string length `byte_count` if this is a small data
element.
'''
cdef cnp.uint32_t mdtype, byte_count
cdef char tag_ptr[4]
cdef int tag_res
cdef object tag_data = None
tag_res = self.cread_tag(&mdtype, &byte_count, tag_ptr)
if tag_res == 2: # sde format
tag_data = tag_ptr[:byte_count]
return (mdtype, byte_count, tag_data)
cdef int cread_tag(self,
cnp.uint32_t *mdtype_ptr,
cnp.uint32_t *byte_count_ptr,
char *data_ptr) except -1:
''' Read tag mdtype and byte_count
Does necessary swapping and takes account of SDE formats
Data may be returned in data_ptr, if this was an SDE
Returns 1 for success, full format; 2 for success, SDE format; -1
if error arises
'''
cdef cnp.uint16_t mdtype_sde, byte_count_sde
cdef cnp.uint32_t mdtype
cdef cnp.uint32_t* u4_ptr = <cnp.uint32_t*>data_ptr
cdef cnp.uint32_t u4s[2]
# First read 8 bytes. The 8 bytes can be in one of two formats.
# For the first - standard format - the 8 bytes are two uint32
# values, of which the first is the integer code for the matlab
# data type (*mdtype*), and the second is the number of bytes of
# that data type that follow (*byte_count*). Thus, if the
# ``mdtype`` is 4 (miDOUBLE), and the ``byte_count`` is 12, then
# there will follow 3 double values. The alternative format is
# "small data element". The first four bytes contain the
# ``byte_count`` and the ``mdtype``, but as uint16. The
# arrangement of the ``byte_count`` and ``mdtype`` is a little
# complex, see below. The following 4 bytes of the 8 bytes
# contain the data. For example, the ``mdtype`` might be 2
# (miUINT8), and the byte count is 3, and the data is in a
# string ``tag``, then the contained matrix is length 3, type
# uint8, where values are ``tag[4], tag[5], tag[6]``.
#
# The following paragraph describes the extraction of ``mdtype``
# and ``byte_count`` for the small data element format. The
# following is somewhat contrary to the matlab documentation,
# but seems to be true of actual .mat files.
#
# If the *file* is big endian, then the first four bytes of the
# tag are two big-endian uint16 values, first ``byte_count`` and
# second ``mdtype``. If the *file* is little-endian then the
# first four bytes are two little-endian uint16 values, first
# ``mdtype`` and second ``byte_count``.
self.cstream.read_into(<void *>u4s, 8)
if self.is_swapped:
mdtype = byteswap_u4(u4s[0])
else:
mdtype = u4s[0]
# The most significant two bytes of a U4 *mdtype* will always be
# 0, if they are not, this must be SDE format
byte_count_sde = mdtype >> 16
if byte_count_sde: # small data element format
mdtype_sde = mdtype & 0xffff
if byte_count_sde > 4:
raise ValueError('Error in SDE format data')
u4_ptr[0] = u4s[1]
mdtype_ptr[0] = mdtype_sde
byte_count_ptr[0] = byte_count_sde
return 2
# regular element
if self.is_swapped:
byte_count_ptr[0] = byteswap_u4(u4s[1])
else:
byte_count_ptr[0] = u4s[1]
mdtype_ptr[0] = mdtype
u4_ptr[0] = 0
return 1
cdef object read_element(self,
cnp.uint32_t *mdtype_ptr,
cnp.uint32_t *byte_count_ptr,
void **pp,
int copy=True):
''' Read data element into string buffer, return buffer
The element is the atom of the matlab file format.
Parameters
----------
mdtype_ptr : uint32_t*
pointer to uint32_t value to which we write the mdtype value
byte_count_ptr : uint32_t*
pointer to uint32_t value to which we write the byte count
pp : void**
pointer to void*. pp[0] will be set to point to the start of
the returned string memory
copy : int
If not 0, do any copies required to allow memory to be freely
altered without interfering with other objects. Otherwise
return string that should not be written to, therefore saving
unnecessary copies
Return
------
data : str
Python string object containing read data
Notes
-----
See ``read_element_into`` for routine to read element into a
pre-allocated block of memory.
'''
cdef cnp.uint32_t mdtype, byte_count
cdef char tag_data[4]
cdef object data
cdef int mod8
cdef int tag_res = self.cread_tag(mdtype_ptr,
byte_count_ptr,
tag_data)
mdtype = mdtype_ptr[0]
byte_count = byte_count_ptr[0]
if tag_res == 1: # full format
data = self.cstream.read_string(
byte_count,
pp,
copy)
# Seek to next 64-bit boundary
mod8 = byte_count % 8
if mod8:
self.cstream.seek(8 - mod8, 1)
else: # SDE format, make safer home for data
data = PyBytes_FromStringAndSize(tag_data, byte_count)
pp[0] = <char *>data
return data
cdef int read_element_into(self,
cnp.uint32_t *mdtype_ptr,
cnp.uint32_t *byte_count_ptr,
void *ptr) except -1:
''' Read element into pre-allocated memory in `ptr`
Parameters
----------
mdtype_ptr : uint32_t*
pointer to uint32_t value to which we write the mdtype value
byte_count_ptr : uint32_t*
pointer to uint32_t value to which we write the byte count
ptr : void*
memory location into which to read. Memory is assumed large
enough to contain read data
Returns
-------
void
Notes
-----
Compare ``read_element``.
'''
cdef:
int mod8
cdef int res = self.cread_tag(
mdtype_ptr,
byte_count_ptr,
<char *>ptr)
cdef cnp.uint32_t byte_count = byte_count_ptr[0]
if res == 1: # full format
res = self.cstream.read_into(ptr, byte_count)
# Seek to next 64-bit boundary
mod8 = byte_count % 8
if mod8:
self.cstream.seek(8 - mod8, 1)
return 0
cpdef cnp.ndarray read_numeric(self, int copy=True):
''' Read numeric data element into ndarray
Reads element, then casts to ndarray.
The type of the array is given by the ``mdtype`` returned via
``read_element``.
'''
cdef cnp.uint32_t mdtype, byte_count
cdef void *data_ptr
cdef cnp.npy_intp el_count
cdef cnp.ndarray el
cdef object data = self.read_element(
&mdtype, &byte_count, <void **>&data_ptr, copy)
cdef cnp.dtype dt = <cnp.dtype>self.dtypes[mdtype]
el_count = byte_count // dt.itemsize
cdef int flags = 0
if copy:
flags = cnp.NPY_WRITEABLE
Py_INCREF(<object> dt)
el = PyArray_NewFromDescr(&PyArray_Type,
dt,
1,
&el_count,
NULL,
<void*>data_ptr,
flags,
<object>NULL)
Py_INCREF(<object> data)
PyArray_Set_BASE(el, data)
return el
cdef inline object read_int8_string(self):
''' Read, return int8 type string
int8 type strings used for variable names, class names of
objects, and field names of structs and objects.
Specializes ``read_element``
'''
cdef:
cnp.uint32_t mdtype, byte_count
void *ptr
object data
data = self.read_element(&mdtype, &byte_count, &ptr)
if mdtype != miINT8:
raise TypeError('Expecting miINT8 as data type')
return data
cdef int read_into_int32s(self, cnp.int32_t *int32p) except -1:
''' Read int32 values into pre-allocated memory
Byteswap as necessary. Specializes ``read_element_into``
Parameters
----------
int32p : int32 pointer
Returns
-------
n_ints : int
Number of integers read
'''
cdef:
cnp.uint32_t mdtype, byte_count
int i
self.read_element_into(&mdtype, &byte_count, <void *>int32p)
if mdtype != miINT32:
raise TypeError('Expecting miINT32 as data type')
cdef int n_ints = byte_count // 4
if self.is_swapped:
for i in range(n_ints):
int32p[i] = byteswap_u4(int32p[i])
return n_ints
def read_full_tag(self):
''' Python method for reading full u4, u4 tag from stream
Returns
-------
mdtype : int32
matlab data type code
byte_count : int32
number of data bytes following
Notes
-----
Assumes tag is in fact full, that is, is not a small data
element. This means it can skip some checks and makes it
slightly faster than ``read_tag``
'''
cdef cnp.uint32_t mdtype, byte_count
self.cread_full_tag(&mdtype, &byte_count)
return mdtype, byte_count
cdef int cread_full_tag(self,
cnp.uint32_t* mdtype,
cnp.uint32_t* byte_count) except -1:
''' C method for reading full u4, u4 tag from stream'''
cdef cnp.uint32_t u4s[2]
self.cstream.read_into(<void *>u4s, 8)
if self.is_swapped:
mdtype[0] = byteswap_u4(u4s[0])
byte_count[0] = byteswap_u4(u4s[1])
else:
mdtype[0] = u4s[0]
byte_count[0] = u4s[1]
return 0
cpdef VarHeader5 read_header(self, int check_stream_limit):
''' Return matrix header for current stream position
Returns matrix headers at top level and sub levels
Parameters
----------
check_stream_limit : if True, then if the returned header
is passed to array_from_header, it will be verified that
the length of the uncompressed data is not overlong (which
can indicate .mat file corruption)
'''
cdef:
cdef cnp.uint32_t u4s[2]
cnp.uint32_t mdtype, byte_count
cnp.uint32_t flags_class, nzmax
cnp.uint16_t mc
int ret, i
void *ptr
VarHeader5 header
# Read and discard mdtype and byte_count
self.cstream.read_into(<void *>u4s, 8)
# get array flags and nzmax
self.cstream.read_into(<void *>u4s, 8)
if self.is_swapped:
flags_class = byteswap_u4(u4s[0])
nzmax = byteswap_u4(u4s[1])
else:
flags_class = u4s[0]
nzmax = u4s[1]
header = VarHeader5()
mc = flags_class & 0xFF
header.mclass = mc
header.check_stream_limit = check_stream_limit
header.is_logical = flags_class >> 9 & 1
header.is_global = flags_class >> 10 & 1
header.is_complex = flags_class >> 11 & 1
header.nzmax = nzmax
# all miMATRIX types except the mxOPAQUE_CLASS have dims and a
# name.
if mc == mxOPAQUE_CLASS:
header.name = None
header.dims = None
return header
header.n_dims = self.read_into_int32s(header.dims_ptr)
if header.n_dims > _MAT_MAXDIMS:
raise ValueError('Too many dimensions (%d) for numpy arrays'
% header.n_dims)
# convert dims to list
header.dims = []
for i in range(header.n_dims):
header.dims.append(header.dims_ptr[i])
header.name = self.read_int8_string()
return header
cdef inline size_t size_from_header(self, VarHeader5 header):
''' Supporting routine for calculating array sizes from header
Probably unnecessary optimization that uses integers stored in
header rather than ``header.dims`` that is a python list.
Parameters
----------
header : VarHeader5
array header
Returns
-------
size : size_t
size of array referenced by header (product of dims)
'''
# calculate number of items in array from dims product
cdef size_t size = 1
cdef int i
for i in range(header.n_dims):
size *= header.dims_ptr[i]
return size
cdef read_mi_matrix(self, int process=1):
''' Read header with matrix at sub-levels
Combines ``read_header`` and functionality of
``array_from_header``. Applies standard processing of array
given options set in self.
Parameters
----------
process : int, optional
If not zero, apply post-processing on returned array
Returns
-------
arr : ndarray or sparse matrix
'''
cdef:
VarHeader5 header
cnp.uint32_t mdtype, byte_count
object arr
# read full tag
self.cread_full_tag(&mdtype, &byte_count)
if mdtype != miMATRIX:
raise TypeError('Expecting matrix here')
if byte_count == 0: # empty matrix
if process and self.squeeze_me:
return np.array([])
else:
return np.array([[]])
header = self.read_header(False)
return self.array_from_header(header, process)
cpdef array_from_header(self, VarHeader5 header, int process=1):
''' Read array of any class, given matrix `header`
Parameters
----------
header : VarHeader5
array header object
process : int, optional
If not zero, apply post-processing on returned array
Returns
-------
arr : array or sparse array
read array
'''
cdef:
object arr
cnp.dtype mat_dtype
cdef size_t remaining
cdef int mc = header.mclass
if (mc == mxDOUBLE_CLASS
or mc == mxSINGLE_CLASS
or mc == mxINT8_CLASS
or mc == mxUINT8_CLASS
or mc == mxINT16_CLASS
or mc == mxUINT16_CLASS
or mc == mxINT32_CLASS
or mc == mxUINT32_CLASS
or mc == mxINT64_CLASS
or mc == mxUINT64_CLASS): # numeric matrix
arr = self.read_real_complex(header)
if process and self.mat_dtype: # might need to recast
if header.is_logical:
mat_dtype = self.bool_dtype
else:
mat_dtype = <object>self.class_dtypes[mc]
arr = arr.astype(mat_dtype)
elif mc == mxSPARSE_CLASS:
arr = self.read_sparse(header)
# no current processing makes sense for sparse
process = False
elif mc == mxCHAR_CLASS:
arr = self.read_char(header)
if process and self.chars_as_strings:
arr = chars_to_strings(arr)
elif mc == mxCELL_CLASS:
arr = self.read_cells(header)
elif mc == mxSTRUCT_CLASS:
arr = self.read_struct(header)
elif mc == mxOBJECT_CLASS: # like structs, but with classname
classname = asstr(self.read_int8_string())
arr = self.read_struct(header)
arr = mio5p.MatlabObject(arr, classname)
elif mc == mxFUNCTION_CLASS: # just a matrix of struct type
arr = self.read_mi_matrix()
arr = mio5p.MatlabFunction(arr)
# to make them more re-writeable - don't squeeze
process = 0
elif mc == mxOPAQUE_CLASS:
arr = self.read_opaque(header)
arr = mio5p.MatlabOpaque(arr)
# to make them more re-writeable - don't squeeze
process = 0
if header.check_stream_limit:
if not self.cstream.all_data_read():
raise ValueError('Did not fully consume compressed contents' +
' of an miCOMPRESSED element. This can' +
' indicate that the .mat file is corrupted.')
if process and self.squeeze_me:
return squeeze_element(arr)
return arr
def shape_from_header(self, VarHeader5 header):
cdef int mc = header.mclass
cdef tuple shape
if mc == mxSPARSE_CLASS:
shape = tuple(header.dims)
elif mc == mxCHAR_CLASS:
shape = tuple(header.dims)
if self.chars_as_strings:
shape = shape[:-1]
else:
shape = tuple(header.dims)
if self.squeeze_me:
shape = tuple([x for x in shape if x != 1])
return shape
cpdef cnp.ndarray read_real_complex(self, VarHeader5 header):
''' Read real / complex matrices from stream '''
cdef:
cnp.ndarray res, res_j
if header.is_complex:
# avoid array copy to save memory
res = self.read_numeric(False)
res_j = self.read_numeric(False)
# Use c8 for f4s and c16 for f8 input. Just ``res = res + res_j *
# 1j`` upcasts to c16 regardless of input type.
if res.itemsize == 4:
res = res.astype('c8')
else:
res = res.astype('c16')
res.imag = res_j
else:
res = self.read_numeric()
return res.reshape(header.dims[::-1]).T
cdef object read_sparse(self, VarHeader5 header):
''' Read sparse matrices from stream '''
cdef cnp.ndarray rowind, indptr, data, data_j
cdef size_t M, N, nnz
rowind = self.read_numeric()
indptr = self.read_numeric()
if header.is_complex:
# avoid array copy to save memory
data = self.read_numeric(False)
data_j = self.read_numeric(False)
data = data + (data_j * 1j)
else:
data = self.read_numeric()
''' From the matlab (TM) API documentation, last found here:
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/
rowind are simply the row indices for all the (nnz) non-zero
entries in the sparse array. rowind has nzmax entries, so
may well have more entries than nnz, the actual number of
non-zero entries, but rowind[nnz:] can be discarded and
should be 0. indptr has length (number of columns + 1), and
is such that, if D = diff(colind), D[j] gives the number of
non-zero entries in column j. Because rowind values are
stored in column order, this gives the column corresponding
to each rowind
'''
M,N = header.dims
indptr = indptr[:N+1]
nnz = indptr[-1]
rowind = rowind[:nnz]
data = data[:nnz]
return scipy.sparse.csc_matrix(
(data,rowind,indptr),
shape=(M,N))
cpdef cnp.ndarray read_char(self, VarHeader5 header):
''' Read char matrices from stream as arrays
Matrices of char are likely to be converted to matrices of
string by later processing in ``array_from_header``
'''
'''Notes to friendly fellow-optimizer
This routine is not much optimized. If I was going to do it,
I'd store the codecs as an object pointer array, as for the
.dtypes, I might use python_string.PyBytes_Decode for decoding,
I'd do something with pointers to pull the LSB out of the uint16
dtype, without using an intermediate array, I guess I'd consider
using the numpy C-API for array creation. I'd try and work out
how to deal with UCS-2 and UCS-4 builds of python, and how numpy
deals with unicode strings passed as memory,
My own unicode introduction here:
http://matthew-brett.github.com/pydagogue/python_unicode.html
'''
cdef:
cnp.uint32_t mdtype, byte_count
char *data_ptr
size_t el_count
object data, res, codec
cnp.ndarray arr
cnp.dtype dt
cdef size_t length = self.size_from_header(header)
data = self.read_element(
&mdtype, &byte_count, <void **>&data_ptr, True)
# There are mat files in the wild that have 0 byte count strings, but
# maybe with non-zero length.
if byte_count == 0:
arr = np.array(' ' * length, dtype='U')
return np.ndarray(shape=header.dims,
dtype='U1',
buffer=arr,
order='F')
# Character data can be of apparently numerical types,
# specifically np.uint8, np.int8, np.uint16. np.unit16 can have
# a length 1 type encoding, like ascii, or length 2 type
# encoding
dt = <cnp.dtype>self.dtypes[mdtype]
if mdtype == miUINT16:
codec = self.uint16_codec
if self.codecs['uint16_len'] == 1: # need LSBs only
arr = np.ndarray(shape=(length,),
dtype=dt,
buffer=data)
data = arr.astype(np.uint8).tostring()
elif mdtype == miINT8 or mdtype == miUINT8:
codec = 'ascii'
elif mdtype in self.codecs: # encoded char data
codec = self.codecs[mdtype]
if not codec:
raise TypeError('Do not support encoding %d' % mdtype)
else:
raise ValueError('Type %d does not appear to be char type'
% mdtype)
uc_str = data.decode(codec)
# cast to array to deal with 2, 4 byte width characters
arr = np.array(uc_str, dtype='U')
# could take this to numpy C-API level, but probably not worth
# it
return np.ndarray(shape=header.dims,
dtype='U1',
buffer=arr,
order='F')
cpdef cnp.ndarray read_cells(self, VarHeader5 header):
''' Read cell array from stream '''
cdef:
size_t i
cnp.ndarray[object, ndim=1] result
# Account for fortran indexing of cells
tupdims = tuple(header.dims[::-1])
cdef size_t length = self.size_from_header(header)
result = np.empty(length, dtype=object)
for i in range(length):
result[i] = self.read_mi_matrix()
return result.reshape(tupdims).T
def read_fieldnames(self):
''' Read fieldnames for struct-like matrix '
Python wrapper for cdef'ed method
'''
cdef int n_names
return self.cread_fieldnames(&n_names)
cdef inline object cread_fieldnames(self, int *n_names_ptr):
cdef:
cnp.int32_t namelength
int i, n_names
object name, field_names
# Read field names into list
cdef int res = self.read_into_int32s(&namelength)
if res != 1:
raise ValueError('Only one value for namelength')
cdef object names = self.read_int8_string()
field_names = []
n_names = PyBytes_Size(names) // namelength
# Make n_duplicates and pointer arrays
cdef:
int *n_duplicates
char **name_ptrs
n_duplicates = <int *>calloc(n_names, sizeof(int))
name_ptrs = <char **>calloc(n_names, sizeof(char *))
cdef:
char *n_ptr = names
int j, dup_no
for i in range(n_names):
name = asstr(PyBytes_FromString(n_ptr))
# Check if this is a duplicate field, rename if so
name_ptrs[i] = n_ptr
dup_no = 0
for j in range(i):
if strcmp(n_ptr, name_ptrs[j]) == 0: # the same
n_duplicates[j] += 1
dup_no = n_duplicates[j]
break
if dup_no != 0:
name = '_%d_%s' % (dup_no, name)
field_names.append(name)
n_ptr += namelength
free(n_duplicates)
free(name_ptrs)
n_names_ptr[0] = n_names
return field_names
cpdef cnp.ndarray read_struct(self, VarHeader5 header):
''' Read struct or object array from stream
Objects are just structs with an extra field *classname*,
defined before (this here) struct format structure
'''
cdef:
cnp.int32_t namelength
int i, n_names
cnp.ndarray rec_res
cnp.ndarray[object, ndim=1] result
object dt, tupdims
# Read field names into list
cdef object field_names = self.cread_fieldnames(&n_names)
# Prepare struct array
tupdims = tuple(header.dims[::-1])
cdef size_t length = self.size_from_header(header)
if self.struct_as_record: # to record arrays
if not n_names:
# If there are no field names, there is no dtype
# representation we can use, falling back to empty
# object
return np.empty(tupdims, dtype=object).T
dt = [(field_name, object) for field_name in field_names]
rec_res = np.empty(length, dtype=dt)
for i in range(length):
for field_name in field_names:
rec_res[i][field_name] = self.read_mi_matrix()
return rec_res.reshape(tupdims).T
# Backward compatibility with previous format
obj_template = mio5p.mat_struct()
obj_template._fieldnames = field_names
result = np.empty(length, dtype=object)
for i in range(length):
item = pycopy(obj_template)
for name in field_names:
item.__dict__[name] = self.read_mi_matrix()
result[i] = item
return result.reshape(tupdims).T
cpdef cnp.ndarray read_opaque(self, VarHeader5 hdr):
''' Read opaque (function workspace) type
Looking at some mat files, the structure of this type seems to
be:
* array flags as usual (already read into `hdr`)
* 3 int8 strings
* a matrix
Then there's a matrix at the end of the mat file that seems have
the anonymous founction workspaces - we load it as
``__function_workspace__``
See the comments at the beginning of ``mio5.py``
'''
cdef cnp.ndarray res = np.empty((1,), dtype=OPAQUE_DTYPE)
res[0]['s0'] = self.read_int8_string()
res[0]['s1'] = self.read_int8_string()
res[0]['s2'] = self.read_int8_string()
res[0]['arr'] = self.read_mi_matrix()
return res
|