1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
"""
Wrappers to LAPACK library
==========================
NOTE: this module is deprecated -- use scipy.linalg.lapack instead!
flapack -- wrappers for Fortran [*] LAPACK routines
clapack -- wrappers for ATLAS LAPACK routines
calc_lwork -- calculate optimal lwork parameters
get_lapack_funcs -- query for wrapper functions.
[*] If ATLAS libraries are available then Fortran routines
actually use ATLAS routines and should perform equally
well to ATLAS routines.
Module flapack
++++++++++++++
In the following all function names are shown without
type prefix (s,d,c,z). Optimal values for lwork can
be computed using calc_lwork module.
Linear Equations
----------------
Drivers::
lu,piv,x,info = gesv(a,b,overwrite_a=0,overwrite_b=0)
lub,piv,x,info = gbsv(kl,ku,ab,b,overwrite_ab=0,overwrite_b=0)
c,x,info = posv(a,b,lower=0,overwrite_a=0,overwrite_b=0)
Computational routines::
lu,piv,info = getrf(a,overwrite_a=0)
x,info = getrs(lu,piv,b,trans=0,overwrite_b=0)
inv_a,info = getri(lu,piv,lwork=min_lwork,overwrite_lu=0)
c,info = potrf(a,lower=0,clean=1,overwrite_a=0)
x,info = potrs(c,b,lower=0,overwrite_b=0)
inv_a,info = potri(c,lower=0,overwrite_c=0)
inv_c,info = trtri(c,lower=0,unitdiag=0,overwrite_c=0)
Linear Least Squares (LLS) Problems
-----------------------------------
Drivers::
v,x,s,rank,info = gelss(a,b,cond=-1.0,lwork=min_lwork,overwrite_a=0,overwrite_b=0)
Computational routines::
qr,tau,info = geqrf(a,lwork=min_lwork,overwrite_a=0)
q,info = orgqr|ungqr(qr,tau,lwork=min_lwork,overwrite_qr=0,overwrite_tau=1)
Generalized Linear Least Squares (LSE and GLM) Problems
-------------------------------------------------------
Standard Eigenvalue and Singular Value Problems
-----------------------------------------------
Drivers::
w,v,info = syev|heev(a,compute_v=1,lower=0,lwork=min_lwork,overwrite_a=0)
w,v,info = syevd|heevd(a,compute_v=1,lower=0,lwork=min_lwork,overwrite_a=0)
w,v,info = syevr|heevr(a,compute_v=1,lower=0,vrange=,irange=,atol=-1.0,lwork=min_lwork,overwrite_a=0)
t,sdim,(wr,wi|w),vs,info = gees(select,a,compute_v=1,sort_t=0,lwork=min_lwork,select_extra_args=(),overwrite_a=0)
wr,(wi,vl|w),vr,info = geev(a,compute_vl=1,compute_vr=1,lwork=min_lwork,overwrite_a=0)
u,s,vt,info = gesdd(a,compute_uv=1,lwork=min_lwork,overwrite_a=0)
Computational routines::
ht,tau,info = gehrd(a,lo=0,hi=n-1,lwork=min_lwork,overwrite_a=0)
ba,lo,hi,pivscale,info = gebal(a,scale=0,permute=0,overwrite_a=0)
Generalized Eigenvalue and Singular Value Problems
--------------------------------------------------
Drivers::
w,v,info = sygv|hegv(a,b,itype=1,compute_v=1,lower=0,lwork=min_lwork,overwrite_a=0,overwrite_b=0)
w,v,info = sygvd|hegvd(a,b,itype=1,compute_v=1,lower=0,lwork=min_lwork,overwrite_a=0,overwrite_b=0)
(alphar,alphai|alpha),beta,vl,vr,info = ggev(a,b,compute_vl=1,compute_vr=1,lwork=min_lwork,overwrite_a=0,overwrite_b=0)
Auxiliary routines
------------------
a,info = lauum(c,lower=0,overwrite_c=0)
a = laswp(a,piv,k1=0,k2=len(piv)-1,off=0,inc=1,overwrite_a=0)
Module clapack
++++++++++++++
Linear Equations
----------------
Drivers::
lu,piv,x,info = gesv(a,b,rowmajor=1,overwrite_a=0,overwrite_b=0)
c,x,info = posv(a,b,lower=0,rowmajor=1,overwrite_a=0,overwrite_b=0)
Computational routines::
lu,piv,info = getrf(a,rowmajor=1,overwrite_a=0)
x,info = getrs(lu,piv,b,trans=0,rowmajor=1,overwrite_b=0)
inv_a,info = getri(lu,piv,rowmajor=1,overwrite_lu=0)
c,info = potrf(a,lower=0,clean=1,rowmajor=1,overwrite_a=0)
x,info = potrs(c,b,lower=0,rowmajor=1,overwrite_b=0)
inv_a,info = potri(c,lower=0,rowmajor=1,overwrite_c=0)
inv_c,info = trtri(c,lower=0,unitdiag=0,rowmajor=1,overwrite_c=0)
Auxiliary routines
------------------
a,info = lauum(c,lower=0,rowmajor=1,overwrite_c=0)
Module calc_lwork
+++++++++++++++++
Optimal lwork is maxwrk. Default is minwrk.
minwrk,maxwrk = gehrd(prefix,n,lo=0,hi=n-1)
minwrk,maxwrk = gesdd(prefix,m,n,compute_uv=1)
minwrk,maxwrk = gelss(prefix,m,n,nrhs)
minwrk,maxwrk = getri(prefix,n)
minwrk,maxwrk = geev(prefix,n,compute_vl=1,compute_vr=1)
minwrk,maxwrk = heev(prefix,n,lower=0)
minwrk,maxwrk = syev(prefix,n,lower=0)
minwrk,maxwrk = gees(prefix,n,compute_v=1)
minwrk,maxwrk = geqrf(prefix,m,n)
minwrk,maxwrk = gqr(prefix,m,n)
"""
from __future__ import division, print_function, absolute_import
__all__ = ['get_lapack_funcs','calc_lwork','flapack','clapack']
from numpy import deprecate
from . import calc_lwork
# The following ensures that possibly missing flavor (C or Fortran) is
# replaced with the available one. If none is available, exception
# is raised at the first attempt to use the resources.
@deprecate(old_name="scipy.lib.lapack", new_name="scipy.linalg.lapack")
def _deprecated():
pass
try:
_deprecated()
except DeprecationWarning as e:
# don't fail import if DeprecationWarnings raise error -- works around
# the situation with Numpy's test framework
pass
from . import flapack
from . import clapack
_use_force_clapack = 1
if hasattr(clapack,'empty_module'):
clapack = flapack
_use_force_clapack = 0
elif hasattr(flapack,'empty_module'):
flapack = clapack
_type_conv = {'f':'s', 'd':'d', 'F':'c', 'D':'z'} # 'd' will be default for 'i',..
_inv_type_conv = {'s':'f','d':'d','c':'F','z':'D'}
@deprecate
def get_lapack_funcs(names,arrays=(),debug=0,force_clapack=1):
"""Return available LAPACK function objects with names.
arrays are used to determine the optimal prefix of
LAPACK routines.
If force_clapack is True then available Atlas routine
is returned for column major storaged arrays with
rowmajor argument set to False.
"""
force_clapack = 0 # XXX: Don't set it true! The feature is unreliable
# and may cause incorrect results.
# See test_basic.test_solve.check_20Feb04_bug.
ordering = []
for i in range(len(arrays)):
t = arrays[i].dtype.char
if t not in _type_conv:
t = 'd'
ordering.append((t,i))
if ordering:
ordering.sort()
required_prefix = _type_conv[ordering[0][0]]
else:
required_prefix = 'd'
dtypechar = _inv_type_conv[required_prefix]
# Default lookup:
if ordering and arrays[ordering[0][1]].flags['FORTRAN']:
# prefer Fortran code for leading array with column major order
m1,m2 = flapack,clapack
else:
# in all other cases, C code is preferred
m1,m2 = clapack,flapack
if not _use_force_clapack:
force_clapack = 0
funcs = []
m1_name = m1.__name__.split('.')[-1]
m2_name = m2.__name__.split('.')[-1]
for name in names:
func_name = required_prefix + name
func = getattr(m1,func_name,None)
if func is None:
func = getattr(m2,func_name)
func.module_name = m2_name
else:
func.module_name = m1_name
if force_clapack and m1 is flapack:
func2 = getattr(m2,func_name,None)
if func2 is not None:
import new
func_code = None # defined in exec
exec(_colmajor_func_template % {'func_name':func_name})
func = new.function(func_code,{'clapack_func':func2},func_name)
func.module_name = m2_name
func.__doc__ = func2.__doc__
func.prefix = required_prefix
func.dtypechar = dtypechar
funcs.append(func)
return tuple(funcs)
_colmajor_func_template = '''\
def %(func_name)s(*args,**kws):
if "rowmajor" not in kws:
kws["rowmajor"] = 0
return clapack_func(*args,**kws)
func_code = %(func_name)s.func_code
'''
from numpy.testing import Tester
test = Tester().test
|