1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
#
# Author: Travis Oliphant, March 2002
#
from __future__ import division, print_function, absolute_import
__all__ = ['expm','expm2','expm3','cosm','sinm','tanm','coshm','sinhm',
'tanhm','logm','funm','signm','sqrtm',
'expm_frechet', 'expm_cond', 'fractional_matrix_power']
from numpy import (Inf, dot, diag, exp, product, logical_not, cast, ravel,
transpose, conjugate, absolute, amax, sign, isfinite, sqrt, single)
import numpy as np
import warnings
# Local imports
from .misc import norm
from .basic import solve, inv
from .special_matrices import triu
from .decomp import eig
from .decomp_svd import svd
from .decomp_schur import schur, rsf2csf
from ._expm_frechet import expm_frechet, expm_cond
from ._matfuncs_sqrtm import sqrtm
eps = np.finfo(float).eps
feps = np.finfo(single).eps
_array_precision = {'i': 1, 'l': 1, 'f': 0, 'd': 1, 'F': 0, 'D': 1}
###############################################################################
# Utility functions.
def _asarray_square(A):
"""
Wraps asarray with the extra requirement that the input be a square matrix.
The motivation is that the matfuncs module has real functions that have
been lifted to square matrix functions.
Parameters
----------
A : array_like
A square matrix.
Returns
-------
out : ndarray
An ndarray copy or view or other representation of A.
"""
A = np.asarray(A)
if len(A.shape) != 2 or A.shape[0] != A.shape[1]:
raise ValueError('expected square array_like input')
return A
def _maybe_real(A, B, tol=None):
"""
Return either B or the real part of B, depending on properties of A and B.
The motivation is that B has been computed as a complicated function of A,
and B may be perturbed by negligible imaginary components.
If A is real and B is complex with small imaginary components,
then return a real copy of B. The assumption in that case would be that
the imaginary components of B are numerical artifacts.
Parameters
----------
A : ndarray
Input array whose type is to be checked as real vs. complex.
B : ndarray
Array to be returned, possibly without its imaginary part.
tol : float
Absolute tolerance.
Returns
-------
out : real or complex array
Either the input array B or only the real part of the input array B.
"""
# Note that booleans and integers compare as real.
if np.isrealobj(A) and np.iscomplexobj(B):
if tol is None:
tol = {0:feps*1e3, 1:eps*1e6}[_array_precision[B.dtype.char]]
if np.allclose(B.imag, 0.0, atol=tol):
B = B.real
return B
###############################################################################
# Matrix functions.
def fractional_matrix_power(A, t):
# This fixes some issue with imports;
# this function calls onenormest which is in scipy.sparse.
A = _asarray_square(A)
import scipy.linalg._matfuncs_inv_ssq
return scipy.linalg._matfuncs_inv_ssq.fractional_matrix_power(A, t)
def logm(A, disp=True):
"""
Compute matrix logarithm.
The matrix logarithm is the inverse of
expm: expm(logm(`A`)) == `A`
Parameters
----------
A : (N, N) array_like
Matrix whose logarithm to evaluate
disp : bool, optional
Print warning if error in the result is estimated large
instead of returning estimated error. (Default: True)
Returns
-------
logm : (N, N) ndarray
Matrix logarithm of `A`
errest : float
(if disp == False)
1-norm of the estimated error, ||err||_1 / ||A||_1
"""
A = _asarray_square(A)
# Avoid circular import ... this is OK, right?
import scipy.linalg._matfuncs_inv_ssq
F = scipy.linalg._matfuncs_inv_ssq.logm(A)
errtol = 1000*eps
#TODO use a better error approximation
errest = norm(expm(F)-A,1) / norm(A,1)
if disp:
if not isfinite(errest) or errest >= errtol:
print("logm result may be inaccurate, approximate err =", errest)
return F
else:
return F, errest
def expm(A, q=None):
"""
Compute the matrix exponential using Pade approximation.
Parameters
----------
A : (N, N) array_like or sparse matrix
Matrix to be exponentiated.
Returns
-------
expm : (N, N) ndarray
Matrix exponential of `A`.
References
----------
.. [1] Awad H. Al-Mohy and Nicholas J. Higham (2009)
"A New Scaling and Squaring Algorithm for the Matrix Exponential."
SIAM Journal on Matrix Analysis and Applications.
31 (3). pp. 970-989. ISSN 1095-7162
"""
if q is not None:
msg = "argument q=... in scipy.linalg.expm is deprecated."
warnings.warn(msg, DeprecationWarning)
# Input checking and conversion is provided by sparse.linalg.expm().
import scipy.sparse.linalg
return scipy.sparse.linalg.expm(A)
# deprecated, but probably should be left there in the long term
@np.deprecate(new_name="expm")
def expm2(A):
"""
Compute the matrix exponential using eigenvalue decomposition.
Parameters
----------
A : (N, N) array_like
Matrix to be exponentiated
Returns
-------
expm2 : (N, N) ndarray
Matrix exponential of `A`
"""
A = _asarray_square(A)
t = A.dtype.char
if t not in ['f','F','d','D']:
A = A.astype('d')
t = 'd'
s, vr = eig(A)
vri = inv(vr)
r = dot(dot(vr, diag(exp(s))), vri)
if t in ['f', 'd']:
return r.real.astype(t)
else:
return r.astype(t)
# deprecated, but probably should be left there in the long term
@np.deprecate(new_name="expm")
def expm3(A, q=20):
"""
Compute the matrix exponential using Taylor series.
Parameters
----------
A : (N, N) array_like
Matrix to be exponentiated
q : int
Order of the Taylor series used is `q-1`
Returns
-------
expm3 : (N, N) ndarray
Matrix exponential of `A`
"""
A = _asarray_square(A)
n = A.shape[0]
t = A.dtype.char
if t not in ['f','F','d','D']:
A = A.astype('d')
t = 'd'
eA = np.identity(n, dtype=t)
trm = np.identity(n, dtype=t)
castfunc = cast[t]
for k in range(1, q):
trm[:] = trm.dot(A) / castfunc(k)
eA += trm
return eA
def cosm(A):
"""
Compute the matrix cosine.
This routine uses expm to compute the matrix exponentials.
Parameters
----------
A : (N, N) array_like
Input array
Returns
-------
cosm : (N, N) ndarray
Matrix cosine of A
"""
A = _asarray_square(A)
if np.iscomplexobj(A):
return 0.5*(expm(1j*A) + expm(-1j*A))
else:
return expm(1j*A).real
def sinm(A):
"""
Compute the matrix sine.
This routine uses expm to compute the matrix exponentials.
Parameters
----------
A : (N, N) array_like
Input array.
Returns
-------
sinm : (N, N) ndarray
Matrix cosine of `A`
"""
A = _asarray_square(A)
if np.iscomplexobj(A):
return -0.5j*(expm(1j*A) - expm(-1j*A))
else:
return expm(1j*A).imag
def tanm(A):
"""
Compute the matrix tangent.
This routine uses expm to compute the matrix exponentials.
Parameters
----------
A : (N, N) array_like
Input array.
Returns
-------
tanm : (N, N) ndarray
Matrix tangent of `A`
"""
A = _asarray_square(A)
return _maybe_real(A, solve(cosm(A), sinm(A)))
def coshm(A):
"""
Compute the hyperbolic matrix cosine.
This routine uses expm to compute the matrix exponentials.
Parameters
----------
A : (N, N) array_like
Input array.
Returns
-------
coshm : (N, N) ndarray
Hyperbolic matrix cosine of `A`
"""
A = _asarray_square(A)
return _maybe_real(A, 0.5 * (expm(A) + expm(-A)))
def sinhm(A):
"""
Compute the hyperbolic matrix sine.
This routine uses expm to compute the matrix exponentials.
Parameters
----------
A : (N, N) array_like
Input array.
Returns
-------
sinhm : (N, N) ndarray
Hyperbolic matrix sine of `A`
"""
A = _asarray_square(A)
return _maybe_real(A, 0.5 * (expm(A) - expm(-A)))
def tanhm(A):
"""
Compute the hyperbolic matrix tangent.
This routine uses expm to compute the matrix exponentials.
Parameters
----------
A : (N, N) array_like
Input array
Returns
-------
tanhm : (N, N) ndarray
Hyperbolic matrix tangent of `A`
"""
A = _asarray_square(A)
return _maybe_real(A, solve(coshm(A), sinhm(A)))
def funm(A, func, disp=True):
"""
Evaluate a matrix function specified by a callable.
Returns the value of matrix-valued function ``f`` at `A`. The
function ``f`` is an extension of the scalar-valued function `func`
to matrices.
Parameters
----------
A : (N, N) array_like
Matrix at which to evaluate the function
func : callable
Callable object that evaluates a scalar function f.
Must be vectorized (eg. using vectorize).
disp : bool, optional
Print warning if error in the result is estimated large
instead of returning estimated error. (Default: True)
Returns
-------
funm : (N, N) ndarray
Value of the matrix function specified by func evaluated at `A`
errest : float
(if disp == False)
1-norm of the estimated error, ||err||_1 / ||A||_1
"""
A = _asarray_square(A)
# Perform Shur decomposition (lapack ?gees)
T, Z = schur(A)
T, Z = rsf2csf(T,Z)
n,n = T.shape
F = diag(func(diag(T))) # apply function to diagonal elements
F = F.astype(T.dtype.char) # e.g. when F is real but T is complex
minden = abs(T[0,0])
# implement Algorithm 11.1.1 from Golub and Van Loan
# "matrix Computations."
for p in range(1,n):
for i in range(1,n-p+1):
j = i + p
s = T[i-1,j-1] * (F[j-1,j-1] - F[i-1,i-1])
ksl = slice(i,j-1)
val = dot(T[i-1,ksl],F[ksl,j-1]) - dot(F[i-1,ksl],T[ksl,j-1])
s = s + val
den = T[j-1,j-1] - T[i-1,i-1]
if den != 0.0:
s = s / den
F[i-1,j-1] = s
minden = min(minden,abs(den))
F = dot(dot(Z, F), transpose(conjugate(Z)))
F = _maybe_real(A, F)
tol = {0:feps, 1:eps}[_array_precision[F.dtype.char]]
if minden == 0.0:
minden = tol
err = min(1, max(tol,(tol/minden)*norm(triu(T,1),1)))
if product(ravel(logical_not(isfinite(F))),axis=0):
err = Inf
if disp:
if err > 1000*tol:
print("funm result may be inaccurate, approximate err =", err)
return F
else:
return F, err
def signm(A, disp=True):
"""
Matrix sign function.
Extension of the scalar sign(x) to matrices.
Parameters
----------
A : (N, N) array_like
Matrix at which to evaluate the sign function
disp : bool, optional
Print warning if error in the result is estimated large
instead of returning estimated error. (Default: True)
Returns
-------
signm : (N, N) ndarray
Value of the sign function at `A`
errest : float
(if disp == False)
1-norm of the estimated error, ||err||_1 / ||A||_1
Examples
--------
>>> from scipy.linalg import signm, eigvals
>>> a = [[1,2,3], [1,2,1], [1,1,1]]
>>> eigvals(a)
array([ 4.12488542+0.j, -0.76155718+0.j, 0.63667176+0.j])
>>> eigvals(signm(a))
array([-1.+0.j, 1.+0.j, 1.+0.j])
"""
A = _asarray_square(A)
def rounded_sign(x):
rx = np.real(x)
if rx.dtype.char == 'f':
c = 1e3*feps*amax(x)
else:
c = 1e3*eps*amax(x)
return sign((absolute(rx) > c) * rx)
result, errest = funm(A, rounded_sign, disp=0)
errtol = {0:1e3*feps, 1:1e3*eps}[_array_precision[result.dtype.char]]
if errest < errtol:
return result
# Handle signm of defective matrices:
# See "E.D.Denman and J.Leyva-Ramos, Appl.Math.Comp.,
# 8:237-250,1981" for how to improve the following (currently a
# rather naive) iteration process:
# a = result # sometimes iteration converges faster but where??
# Shifting to avoid zero eigenvalues. How to ensure that shifting does
# not change the spectrum too much?
vals = svd(A, compute_uv=0)
max_sv = np.amax(vals)
# min_nonzero_sv = vals[(vals>max_sv*errtol).tolist().count(1)-1]
# c = 0.5/min_nonzero_sv
c = 0.5/max_sv
S0 = A + c*np.identity(A.shape[0])
prev_errest = errest
for i in range(100):
iS0 = inv(S0)
S0 = 0.5*(S0 + iS0)
Pp = 0.5*(dot(S0,S0)+S0)
errest = norm(dot(Pp,Pp)-Pp,1)
if errest < errtol or prev_errest == errest:
break
prev_errest = errest
if disp:
if not isfinite(errest) or errest >= errtol:
print("signm result may be inaccurate, approximate err =", errest)
return S0
else:
return S0, errest
|