1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
|
# Original Author: Travis Oliphant 2002
# Bug-fixes in 2006 by Tim Leslie
from __future__ import division, print_function, absolute_import
import numpy
from numpy import (asarray, tan, exp, ones, squeeze, sign,
all, log, sqrt, pi, shape, array, minimum, where, random, deprecate)
from .optimize import OptimizeResult, _check_unknown_options
from scipy.lib.six import xrange
__all__ = ['anneal']
_double_min = numpy.finfo(float).min
_double_max = numpy.finfo(float).max
class base_schedule(object):
def __init__(self):
self.dwell = 20
self.learn_rate = 0.5
self.lower = -10
self.upper = 10
self.Ninit = 50
self.accepted = 0
self.tests = 0
self.feval = 0
self.k = 0
self.T = None
def init(self, **options):
self.__dict__.update(options)
self.lower = asarray(self.lower)
self.lower = where(self.lower == numpy.NINF, -_double_max, self.lower)
self.upper = asarray(self.upper)
self.upper = where(self.upper == numpy.PINF, _double_max, self.upper)
self.k = 0
self.accepted = 0
self.feval = 0
self.tests = 0
def getstart_temp(self, best_state):
""" Find a matching starting temperature and starting parameters vector
i.e. find x0 such that func(x0) = T0.
Parameters
----------
best_state : _state
A _state object to store the function value and x0 found.
Returns
-------
x0 : array
The starting parameters vector.
"""
assert(not self.dims is None)
lrange = self.lower
urange = self.upper
fmax = _double_min
fmin = _double_max
for _ in range(self.Ninit):
x0 = random.uniform(size=self.dims)*(urange-lrange) + lrange
fval = self.func(x0, *self.args)
self.feval += 1
if fval > fmax:
fmax = fval
if fval < fmin:
fmin = fval
best_state.cost = fval
best_state.x = array(x0)
self.T0 = (fmax-fmin)*1.5
return best_state.x
def accept_test(self, dE):
T = self.T
self.tests += 1
if dE < 0:
self.accepted += 1
return 1
p = exp(-dE*1.0/self.boltzmann/T)
if (p > random.uniform(0.0, 1.0)):
self.accepted += 1
return 1
return 0
def update_guess(self, x0):
pass
def update_temp(self, x0):
pass
# A schedule due to Lester Ingber
class fast_sa(base_schedule):
def init(self, **options):
self.__dict__.update(options)
if self.m is None:
self.m = 1.0
if self.n is None:
self.n = 1.0
self.c = self.m * exp(-self.n * self.quench)
def update_guess(self, x0):
x0 = asarray(x0)
u = squeeze(random.uniform(0.0, 1.0, size=self.dims))
T = self.T
y = sign(u-0.5)*T*((1+1.0/T)**abs(2*u-1)-1.0)
xc = y*(self.upper - self.lower)
xnew = x0 + xc
return xnew
def update_temp(self):
self.T = self.T0*exp(-self.c * self.k**(self.quench))
self.k += 1
return
class cauchy_sa(base_schedule):
def update_guess(self, x0):
x0 = asarray(x0)
numbers = squeeze(random.uniform(-pi/2, pi/2, size=self.dims))
xc = self.learn_rate * self.T * tan(numbers)
xnew = x0 + xc
return xnew
def update_temp(self):
self.T = self.T0/(1+self.k)
self.k += 1
return
class boltzmann_sa(base_schedule):
def update_guess(self, x0):
std = minimum(sqrt(self.T) * ones(self.dims),
(self.upper - self.lower) / 3.0 / self.learn_rate)
x0 = asarray(x0)
xc = squeeze(random.normal(0, 1.0, size=self.dims))
xnew = x0 + xc*std*self.learn_rate
return xnew
def update_temp(self):
self.k += 1
self.T = self.T0 / log(self.k+1.0)
return
class _state(object):
def __init__(self):
self.x = None
self.cost = None
# TODO:
# allow for general annealing temperature profile
# in that case use update given by alpha and omega and
# variation of all previous updates and temperature?
# Simulated annealing
@deprecate(message='Deprecated in scipy 0.14.0, use basinhopping instead')
def anneal(func, x0, args=(), schedule='fast', full_output=0,
T0=None, Tf=1e-12, maxeval=None, maxaccept=None, maxiter=400,
boltzmann=1.0, learn_rate=0.5, feps=1e-6, quench=1.0, m=1.0, n=1.0,
lower=-100, upper=100, dwell=50, disp=True):
"""
Minimize a function using simulated annealing.
Uses simulated annealing, a random algorithm that uses no derivative
information from the function being optimized. Other names for this
family of approaches include: "Monte Carlo", "Metropolis",
"Metropolis-Hastings", `etc`. They all involve (a) evaluating the
objective function on a random set of points, (b) keeping those that
pass their randomized evaluation critera, (c) cooling (`i.e.`,
tightening) the evaluation critera, and (d) repeating until their
termination critera are met. In practice they have been used mainly in
discrete rather than in continuous optimization.
Available annealing schedules are 'fast', 'cauchy' and 'boltzmann'.
Parameters
----------
func : callable
The objective function to be minimized. Must be in the form
`f(x, *args)`, where `x` is the argument in the form of a 1-D array
and `args` is a tuple of any additional fixed parameters needed to
completely specify the function.
x0: 1-D array
An initial guess at the optimizing argument of `func`.
args : tuple, optional
Any additional fixed parameters needed to completely
specify the objective function.
schedule : str, optional
The annealing schedule to use. Must be one of 'fast', 'cauchy' or
'boltzmann'. See `Notes`.
full_output : bool, optional
If `full_output`, then return all values listed in the Returns
section. Otherwise, return just the `xmin` and `status` values.
T0 : float, optional
The initial "temperature". If None, then estimate it as 1.2 times
the largest cost-function deviation over random points in the
box-shaped region specified by the `lower, upper` input parameters.
Tf : float, optional
Final goal temperature. Cease iterations if the temperature
falls below `Tf`.
maxeval : int, optional
Cease iterations if the number of function evaluations exceeds
`maxeval`.
maxaccept : int, optional
Cease iterations if the number of points accepted exceeds `maxaccept`.
See `Notes` for the probabilistic acceptance criteria used.
maxiter : int, optional
Cease iterations if the number of cooling iterations exceeds `maxiter`.
learn_rate : float, optional
Scale constant for tuning the probabilistc acceptance criteria.
boltzmann : float, optional
Boltzmann constant in the probabilistic acceptance criteria
(increase for less stringent criteria at each temperature).
feps : float, optional
Cease iterations if the relative errors in the function value over the
last four coolings is below `feps`.
quench, m, n : floats, optional
Parameters to alter the `fast` simulated annealing schedule.
See `Notes`.
lower, upper : floats or 1-D arrays, optional
Lower and upper bounds on the argument `x`. If floats are provided,
they apply to all components of `x`.
dwell : int, optional
The number of times to execute the inner loop at each value of the
temperature. See `Notes`.
disp : bool, optional
Print a descriptive convergence message if True.
Returns
-------
xmin : ndarray
The point where the lowest function value was found.
Jmin : float
The objective function value at `xmin`.
T : float
The temperature at termination of the iterations.
feval : int
Number of function evaluations used.
iters : int
Number of cooling iterations used.
accept : int
Number of tests accepted.
status : int
A code indicating the reason for termination:
- 0 : Points no longer changing.
- 1 : Cooled to final temperature.
- 2 : Maximum function evaluations reached.
- 3 : Maximum cooling iterations reached.
- 4 : Maximum accepted query locations reached.
- 5 : Final point not the minimum amongst encountered points.
See Also
--------
basinhopping : another (more performant) global optimizer
brute : brute-force global optimizer
Notes
-----
Simulated annealing is a random algorithm which uses no derivative
information from the function being optimized. In practice it has
been more useful in discrete optimization than continuous
optimization, as there are usually better algorithms for continuous
optimization problems.
Some experimentation by trying the different temperature
schedules and altering their parameters is likely required to
obtain good performance.
The randomness in the algorithm comes from random sampling in numpy.
To obtain the same results you can call `numpy.random.seed` with the
same seed immediately before calling `anneal`.
We give a brief description of how the three temperature schedules
generate new points and vary their temperature. Temperatures are
only updated with iterations in the outer loop. The inner loop is
over loop over ``xrange(dwell)``, and new points are generated for
every iteration in the inner loop. Whether the proposed new points
are accepted is probabilistic.
For readability, let ``d`` denote the dimension of the inputs to func.
Also, let ``x_old`` denote the previous state, and ``k`` denote the
iteration number of the outer loop. All other variables not
defined below are input variables to `anneal` itself.
In the 'fast' schedule the updates are::
u ~ Uniform(0, 1, size = d)
y = sgn(u - 0.5) * T * ((1 + 1/T)**abs(2*u - 1) - 1.0)
xc = y * (upper - lower)
x_new = x_old + xc
c = n * exp(-n * quench)
T_new = T0 * exp(-c * k**quench)
In the 'cauchy' schedule the updates are::
u ~ Uniform(-pi/2, pi/2, size=d)
xc = learn_rate * T * tan(u)
x_new = x_old + xc
T_new = T0 / (1 + k)
In the 'boltzmann' schedule the updates are::
std = minimum(sqrt(T) * ones(d), (upper - lower) / (3*learn_rate))
y ~ Normal(0, std, size = d)
x_new = x_old + learn_rate * y
T_new = T0 / log(1 + k)
References
----------
[1] P. J. M. van Laarhoven and E. H. L. Aarts, "Simulated Annealing: Theory
and Applications", Kluwer Academic Publishers, 1987.
[2] W.H. Press et al., "Numerical Recipies: The Art of Scientific Computing",
Cambridge U. Press, 1987.
Examples
--------
*Example 1.* We illustrate the use of `anneal` to seek the global minimum
of a function of two variables that is equal to the sum of a positive-
definite quadratic and two deep "Gaussian-shaped" craters. Specifically,
define the objective function `f` as the sum of three other functions,
``f = f1 + f2 + f3``. We suppose each of these has a signature
``(z, *params)``, where ``z = (x, y)``, ``params``, and the functions are
as defined below.
>>> params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
>>> def f1(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)
>>> def f2(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))
>>> def f3(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))
>>> def f(z, *params):
... x, y = z
... a, b, c, d, e, f, g, h, i, j, k, l, scale = params
... return f1(z, *params) + f2(z, *params) + f3(z, *params)
>>> x0 = np.array([2., 2.]) # Initial guess.
>>> from scipy import optimize
>>> np.random.seed(555) # Seeded to allow replication.
>>> res = optimize.anneal(f, x0, args=params, schedule='boltzmann',
full_output=True, maxiter=500, lower=-10,
upper=10, dwell=250, disp=True)
Warning: Maximum number of iterations exceeded.
>>> res[0] # obtained minimum
array([-1.03914194, 1.81330654])
>>> res[1] # function value at minimum
-3.3817...
So this run settled on the point [-1.039, 1.813] with a minimum function
value of about -3.382. The final temperature was about 212. The run used
125301 function evaluations, 501 iterations (including the initial guess as
a iteration), and accepted 61162 points. The status flag of 3 also
indicates that `maxiter` was reached.
This problem's true global minimum lies near the point [-1.057, 1.808]
and has a value of about -3.409. So these `anneal` results are pretty
good and could be used as the starting guess in a local optimizer to
seek a more exact local minimum.
*Example 2.* To minimize the same objective function using
the `minimize` approach, we need to (a) convert the options to an
"options dictionary" using the keys prescribed for this method,
(b) call the `minimize` function with the name of the method (which
in this case is 'Anneal'), and (c) take account of the fact that
the returned value will be a `OptimizeResult` object (`i.e.`, a dictionary,
as defined in `optimize.py`).
All of the allowable options for 'Anneal' when using the `minimize`
approach are listed in the ``myopts`` dictionary given below, although
in practice only the non-default values would be needed. Some of their
names differ from those used in the `anneal` approach. We can proceed
as follows:
>>> myopts = {
'schedule' : 'boltzmann', # Non-default value.
'maxfev' : None, # Default, formerly `maxeval`.
'maxiter' : 500, # Non-default value.
'maxaccept' : None, # Default value.
'ftol' : 1e-6, # Default, formerly `feps`.
'T0' : None, # Default value.
'Tf' : 1e-12, # Default value.
'boltzmann' : 1.0, # Default value.
'learn_rate' : 0.5, # Default value.
'quench' : 1.0, # Default value.
'm' : 1.0, # Default value.
'n' : 1.0, # Default value.
'lower' : -10, # Non-default value.
'upper' : +10, # Non-default value.
'dwell' : 250, # Non-default value.
'disp' : True # Default value.
}
>>> from scipy import optimize
>>> np.random.seed(777) # Seeded to allow replication.
>>> res2 = optimize.minimize(f, x0, args=params, method='Anneal',
options=myopts)
Warning: Maximum number of iterations exceeded.
>>> res2
status: 3
success: False
accept: 61742
nfev: 125301
T: 214.20624873839623
fun: -3.4084065576676053
x: array([-1.05757366, 1.8071427 ])
message: 'Maximum cooling iterations reached'
nit: 501
"""
opts = {'schedule': schedule,
'T0': T0,
'Tf': Tf,
'maxfev': maxeval,
'maxaccept': maxaccept,
'maxiter': maxiter,
'boltzmann': boltzmann,
'learn_rate': learn_rate,
'ftol': feps,
'quench': quench,
'm': m,
'n': n,
'lower': lower,
'upper': upper,
'dwell': dwell,
'disp': disp}
res = _minimize_anneal(func, x0, args, **opts)
if full_output:
return res['x'], res['fun'], res['T'], res['nfev'], res['nit'], \
res['accept'], res['status']
else:
return res['x'], res['status']
def _minimize_anneal(func, x0, args=(),
schedule='fast', T0=None, Tf=1e-12, maxfev=None,
maxaccept=None, maxiter=400, boltzmann=1.0,
learn_rate=0.5, ftol=1e-6, quench=1.0, m=1.0, n=1.0,
lower=-100, upper=100, dwell=50, disp=False,
**unknown_options):
"""
Minimization of scalar function of one or more variables using the
simulated annealing algorithm.
Options for the simulated annealing algorithm are:
disp : bool
Set to True to print convergence messages.
schedule : str
Annealing schedule to use. One of: 'fast', 'cauchy' or
'boltzmann'.
T0 : float
Initial Temperature (estimated as 1.2 times the largest
cost-function deviation over random points in the range).
Tf : float
Final goal temperature.
maxfev : int
Maximum number of function evaluations to make.
maxaccept : int
Maximum changes to accept.
maxiter : int
Maximum number of iterations to perform.
boltzmann : float
Boltzmann constant in acceptance test (increase for less
stringent test at each temperature).
learn_rate : float
Scale constant for adjusting guesses.
ftol : float
Relative error in ``fun(x)`` acceptable for convergence.
quench, m, n : float
Parameters to alter fast_sa schedule.
lower, upper : float or ndarray
Lower and upper bounds on `x`.
dwell : int
The number of times to search the space at each temperature.
This function is called by the `minimize` function with
`method=anneal`. It is not supposed to be called directly.
"""
_check_unknown_options(unknown_options)
maxeval = maxfev
feps = ftol
x0 = asarray(x0)
lower = asarray(lower)
upper = asarray(upper)
schedule = eval(schedule+'_sa()')
# initialize the schedule
schedule.init(dims=shape(x0), func=func, args=args, boltzmann=boltzmann,
T0=T0, learn_rate=learn_rate, lower=lower, upper=upper,
m=m, n=n, quench=quench, dwell=dwell)
current_state, last_state, best_state = _state(), _state(), _state()
if T0 is None:
x0 = schedule.getstart_temp(best_state)
else:
best_state.x = None
best_state.cost = numpy.Inf
last_state.x = asarray(x0).copy()
fval = func(x0, *args)
schedule.feval += 1
last_state.cost = fval
if last_state.cost < best_state.cost:
best_state.cost = fval
best_state.x = asarray(x0).copy()
schedule.T = schedule.T0
fqueue = [100, 300, 500, 700]
iters = 0
while 1:
for n in xrange(dwell):
current_state.x = schedule.update_guess(last_state.x)
current_state.cost = func(current_state.x, *args)
schedule.feval += 1
dE = current_state.cost - last_state.cost
if schedule.accept_test(dE):
last_state.x = current_state.x.copy()
last_state.cost = current_state.cost
if last_state.cost < best_state.cost:
best_state.x = last_state.x.copy()
best_state.cost = last_state.cost
schedule.update_temp()
iters += 1
# Stopping conditions
# 0) last saved values of f from each cooling step
# are all very similar (effectively cooled)
# 1) Tf is set and we are below it
# 2) maxeval is set and we are past it
# 3) maxiter is set and we are past it
# 4) maxaccept is set and we are past it
fqueue.append(squeeze(last_state.cost))
fqueue.pop(0)
af = asarray(fqueue)*1.0
if all(abs((af-af[0])/af[0]) < feps):
retval = 0
if abs(af[-1]-best_state.cost) > feps*10:
retval = 5
if disp:
print("Warning: Cooled to %f at %s but this is not"
% (squeeze(last_state.cost),
str(squeeze(last_state.x)))
+ " the smallest point found.")
break
if (Tf is not None) and (schedule.T < Tf):
retval = 1
break
if (maxeval is not None) and (schedule.feval > maxeval):
retval = 2
break
if (iters > maxiter):
if disp:
print("Warning: Maximum number of iterations exceeded.")
retval = 3
break
if (maxaccept is not None) and (schedule.accepted > maxaccept):
retval = 4
break
result = OptimizeResult(x=best_state.x, fun=best_state.cost,
T=schedule.T, nfev=schedule.feval, nit=iters,
accept=schedule.accepted, status=retval,
success=(retval <= 1),
message={0: 'Points no longer changing',
1: 'Cooled to final temperature',
2: 'Maximum function evaluations',
3: 'Maximum cooling iterations reached',
4: 'Maximum accepted query locations reached',
5: 'Final point not the minimum amongst '
'encountered points'}[retval])
return result
if __name__ == "__main__":
from numpy import cos
# minimum expected at ~-0.195
func = lambda x: cos(14.5 * x - 0.3) + (x + 0.2) * x
print(anneal(func, 1.0, full_output=1, upper=3.0, lower=-3.0,
feps=1e-4, maxiter=2000, schedule='cauchy'))
print(anneal(func, 1.0, full_output=1, upper=3.0, lower=-3.0,
feps=1e-4, maxiter=2000, schedule='fast'))
print(anneal(func, 1.0, full_output=1, upper=3.0, lower=-3.0,
feps=1e-4, maxiter=2000, schedule='boltzmann'))
# minimum expected at ~[-0.195, -0.1]
func = lambda x: (cos(14.5 * x[0] - 0.3) + (x[1] + 0.2) * x[1] +
(x[0] + 0.2) * x[0])
print(anneal(func, [1.0, 1.0], full_output=1,
upper=[3.0, 3.0], lower=[-3.0, -3.0],
feps=1e-4, maxiter=2000, schedule='cauchy'))
print(anneal(func, [1.0, 1.0], full_output=1,
upper=[3.0, 3.0], lower=[-3.0, -3.0],
feps=1e-4, maxiter=2000, schedule='fast'))
print(anneal(func, [1.0, 1.0], full_output=1,
upper=[3.0, 3.0], lower=[-3.0, -3.0],
feps=1e-4, maxiter=2000, schedule='boltzmann'))
|