1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
import time
from collections import defaultdict
import numpy as np
from numpy.testing import Tester, TestCase
import scipy.optimize
from scipy.optimize.optimize import rosen, rosen_der, rosen_hess
import test_functions as funcs
class _BenchOptimizers(object):
"""a framework for benchmarking the optimizer
Parameters
----------
function_name : string
fun : callable
der : callable
function that returns the derivative (jacobian, gradient) of fun
hess : callable
function that returns the hessian of fun
minimizer_kwargs : kwargs
additional keywords passed to the minimizer. e.g. tol, maxiter
"""
def __init__(self, function_name, fun, der=None, hess=None,
**minimizer_kwargs):
self.function_name = function_name
self.fun = fun
self.der = der
self.hess = hess
self.minimizer_kwargs = minimizer_kwargs
if "tol" not in minimizer_kwargs:
minimizer_kwargs["tol"] = 1e-4
self.results = []
def reset(self):
self.results = []
def add_result(self, result, t, name):
"""add a result to the list"""
result.time = t
result.name = name
if not hasattr(result, "njev"):
result.njev = 0
if not hasattr(result, "nhev"):
result.nhev = 0
self.results.append(result)
def print_results(self):
"""print the current list of results"""
results = self.average_results()
results = sorted(results, key=lambda x: (x.nfail, x.mean_time))
print("")
print("=========================================================")
print("Optimizer benchmark: %s" % (self.function_name))
print("dimensions: %d, extra kwargs: %s" % (results[0].ndim, str(self.minimizer_kwargs)))
print("averaged over %d starting configurations" % (results[0].ntrials))
print(" Optimizer nfail nfev njev nhev time")
print("---------------------------------------------------------")
for res in results:
print("%11s | %4d | %4d | %4d | %4d | %.6g" %
(res.name, res.nfail, res.mean_nfev, res.mean_njev, res.mean_nhev, res.mean_time))
def average_results(self):
"""group the results by minimizer and average over the runs"""
grouped_results = defaultdict(list)
for res in self.results:
grouped_results[res.name].append(res)
averaged_results = dict()
for name, result_list in grouped_results.items():
newres = scipy.optimize.OptimizeResult()
newres.name = name
newres.mean_nfev = np.mean([r.nfev for r in result_list])
newres.mean_njev = np.mean([r.njev for r in result_list])
newres.mean_nhev = np.mean([r.nhev for r in result_list])
newres.mean_time = np.mean([r.time for r in result_list])
newres.ntrials = len(result_list)
newres.nfail = len([r for r in result_list if not r.success])
try:
newres.ndim = len(result_list[0].x)
except TypeError:
newres.ndim = 1
averaged_results[name] = newres
return averaged_results.values()
def bench_run(self, x0, **minimizer_kwargs):
"""do an optimization test starting at x0 for all the optimizers"""
kwargs = self.minimizer_kwargs
fonly_methods = ["COBYLA", 'Powell']
for method in fonly_methods:
t0 = time.time()
res = scipy.optimize.minimize(self.fun, x0, method=method,
**kwargs)
t1 = time.time()
self.add_result(res, t1-t0, method)
gradient_methods = ['L-BFGS-B', 'BFGS', 'CG', 'TNC', 'SLSQP']
if self.der is not None:
for method in gradient_methods:
t0 = time.time()
res = scipy.optimize.minimize(self.fun, x0, method=method,
jac=self.der, **kwargs)
t1 = time.time()
self.add_result(res, t1-t0, method)
hessian_methods = ["Newton-CG", 'dogleg', 'trust-ncg']
if self.hess is not None:
for method in hessian_methods:
t0 = time.time()
res = scipy.optimize.minimize(self.fun, x0, method=method,
jac=self.der, hess=self.hess,
**kwargs)
t1 = time.time()
self.add_result(res, t1-t0, method)
class BenchSmoothUnbounded(TestCase):
"""Benchmark the optimizers with smooth, unbounded, functions"""
def bench_rosenbrock(self):
b = _BenchOptimizers("Rosenbrock function",
fun=rosen, der=rosen_der, hess=rosen_hess)
for i in range(10):
b.bench_run(np.random.uniform(-3,3,3))
b.print_results()
def bench_rosenbrock_tight(self):
b = _BenchOptimizers("Rosenbrock function",
fun=rosen, der=rosen_der, hess=rosen_hess,
tol=1e-8)
for i in range(10):
b.bench_run(np.random.uniform(-3,3,3))
b.print_results()
def bench_simple_quadratic(self):
s = funcs.SimpleQuadratic()
# print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3]))
b = _BenchOptimizers("simple quadratic function",
fun=s.fun, der=s.der, hess=s.hess)
for i in range(10):
b.bench_run(np.random.uniform(-2,2,3))
b.print_results()
def bench_asymetric_quadratic(self):
s = funcs.AsymmetricQuadratic()
# print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3]))
b = _BenchOptimizers("function sum(x**2) + x[0]",
fun=s.fun, der=s.der, hess=s.hess)
for i in range(10):
b.bench_run(np.random.uniform(-2,2,3))
b.print_results()
def bench_sin_1d(self):
fun = lambda x: np.sin(x[0])
der = lambda x: np.array([np.cos(x[0])])
b = _BenchOptimizers("1d sin function",
fun=fun, der=der, hess=None)
for i in range(10):
b.bench_run(np.random.uniform(-2,2,1))
b.print_results()
def bench_booth(self):
s = funcs.Booth()
# print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3]))
b = _BenchOptimizers("Booth's function",
fun=s.fun, der=s.der, hess=None)
for i in range(10):
b.bench_run(np.random.uniform(0,10,2))
b.print_results()
def bench_beale(self):
s = funcs.Beale()
# print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3]))
b = _BenchOptimizers("Beale's function",
fun=s.fun, der=s.der, hess=None)
for i in range(10):
b.bench_run(np.random.uniform(0,10,2))
b.print_results()
def bench_LJ(self):
s = funcs.LJ()
# print "checking gradient", scipy.optimize.check_grad(s.get_energy, s.get_gradient, np.random.uniform(-2,2,3*4))
natoms = 4
b = _BenchOptimizers("%d atom Lennard Jones potential" % (natoms),
fun=s.get_energy, der=s.get_gradient, hess=None)
for i in range(10):
b.bench_run(np.random.uniform(-2,2,natoms*3))
b.print_results()
#def main():
# bench_rosenbrock()
# bench_simple_quadratic()
# bench_asymetric_quadratic()
# bench_sin_1d()
# bench_booth()
# bench_beale()
# bench_LJ()
if __name__ == "__main__":
Tester().bench(extra_argv=dict())
|