File: bench_optimizers.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (204 lines) | stat: -rw-r--r-- 7,879 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import time
from collections import defaultdict

import numpy as np
from numpy.testing import Tester, TestCase

import scipy.optimize
from scipy.optimize.optimize import rosen, rosen_der, rosen_hess
import test_functions as funcs


class _BenchOptimizers(object):
    """a framework for benchmarking the optimizer

    Parameters
    ----------
    function_name : string
    fun : callable
    der : callable
        function that returns the derivative (jacobian, gradient) of fun
    hess : callable
        function that returns the hessian of fun
    minimizer_kwargs : kwargs
        additional keywords passed to the minimizer.  e.g. tol, maxiter
    """
    def __init__(self, function_name, fun, der=None, hess=None,
                  **minimizer_kwargs):
        self.function_name = function_name
        self.fun = fun
        self.der = der
        self.hess = hess
        self.minimizer_kwargs = minimizer_kwargs
        if "tol" not in minimizer_kwargs:
            minimizer_kwargs["tol"] = 1e-4

        self.results = []

    def reset(self):
        self.results = []

    def add_result(self, result, t, name):
        """add a result to the list"""
        result.time = t
        result.name = name
        if not hasattr(result, "njev"):
            result.njev = 0
        if not hasattr(result, "nhev"):
            result.nhev = 0
        self.results.append(result)

    def print_results(self):
        """print the current list of results"""
        results = self.average_results()
        results = sorted(results, key=lambda x: (x.nfail, x.mean_time))
        print("")
        print("=========================================================")
        print("Optimizer benchmark: %s" % (self.function_name))
        print("dimensions: %d, extra kwargs: %s" % (results[0].ndim, str(self.minimizer_kwargs)))
        print("averaged over %d starting configurations" % (results[0].ntrials))
        print("  Optimizer    nfail   nfev    njev    nhev    time")
        print("---------------------------------------------------------")
        for res in results:
            print("%11s  | %4d  | %4d  | %4d  | %4d  | %.6g" %
                  (res.name, res.nfail, res.mean_nfev, res.mean_njev, res.mean_nhev, res.mean_time))

    def average_results(self):
        """group the results by minimizer and average over the runs"""
        grouped_results = defaultdict(list)
        for res in self.results:
            grouped_results[res.name].append(res)

        averaged_results = dict()
        for name, result_list in grouped_results.items():
            newres = scipy.optimize.OptimizeResult()
            newres.name = name
            newres.mean_nfev = np.mean([r.nfev for r in result_list])
            newres.mean_njev = np.mean([r.njev for r in result_list])
            newres.mean_nhev = np.mean([r.nhev for r in result_list])
            newres.mean_time = np.mean([r.time for r in result_list])
            newres.ntrials = len(result_list)
            newres.nfail = len([r for r in result_list if not r.success])
            try:
                newres.ndim = len(result_list[0].x)
            except TypeError:
                newres.ndim = 1
            averaged_results[name] = newres
        return averaged_results.values()

    def bench_run(self, x0, **minimizer_kwargs):
        """do an optimization test starting at x0 for all the optimizers"""
        kwargs = self.minimizer_kwargs

        fonly_methods = ["COBYLA", 'Powell']
        for method in fonly_methods:
            t0 = time.time()
            res = scipy.optimize.minimize(self.fun, x0, method=method,
                                          **kwargs)
            t1 = time.time()
            self.add_result(res, t1-t0, method)


        gradient_methods = ['L-BFGS-B', 'BFGS', 'CG', 'TNC', 'SLSQP']
        if self.der is not None:
            for method in gradient_methods:
                t0 = time.time()
                res = scipy.optimize.minimize(self.fun, x0, method=method,
                                              jac=self.der, **kwargs)
                t1 = time.time()
                self.add_result(res, t1-t0, method)

        hessian_methods = ["Newton-CG", 'dogleg', 'trust-ncg']
        if self.hess is not None:
            for method in hessian_methods:
                t0 = time.time()
                res = scipy.optimize.minimize(self.fun, x0, method=method,
                                              jac=self.der, hess=self.hess,
                                              **kwargs)
                t1 = time.time()
                self.add_result(res, t1-t0, method)

class BenchSmoothUnbounded(TestCase):
    """Benchmark the optimizers with smooth, unbounded, functions"""
    def bench_rosenbrock(self):
        b = _BenchOptimizers("Rosenbrock function",
                             fun=rosen, der=rosen_der, hess=rosen_hess)
        for i in range(10):
            b.bench_run(np.random.uniform(-3,3,3))
        b.print_results()

    def bench_rosenbrock_tight(self):
        b = _BenchOptimizers("Rosenbrock function",
                             fun=rosen, der=rosen_der, hess=rosen_hess,
                             tol=1e-8)
        for i in range(10):
            b.bench_run(np.random.uniform(-3,3,3))
        b.print_results()

    def bench_simple_quadratic(self):
        s = funcs.SimpleQuadratic()
    #    print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3]))
        b = _BenchOptimizers("simple quadratic function",
                             fun=s.fun, der=s.der, hess=s.hess)
        for i in range(10):
            b.bench_run(np.random.uniform(-2,2,3))
        b.print_results()

    def bench_asymetric_quadratic(self):
        s = funcs.AsymmetricQuadratic()
    #    print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3]))
        b = _BenchOptimizers("function sum(x**2) + x[0]",
                             fun=s.fun, der=s.der, hess=s.hess)
        for i in range(10):
            b.bench_run(np.random.uniform(-2,2,3))
        b.print_results()

    def bench_sin_1d(self):
        fun = lambda x: np.sin(x[0])
        der = lambda x: np.array([np.cos(x[0])])
        b = _BenchOptimizers("1d sin function",
                             fun=fun, der=der, hess=None)
        for i in range(10):
            b.bench_run(np.random.uniform(-2,2,1))
        b.print_results()

    def bench_booth(self):
        s = funcs.Booth()
    #    print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3]))
        b = _BenchOptimizers("Booth's function",
                             fun=s.fun, der=s.der, hess=None)
        for i in range(10):
            b.bench_run(np.random.uniform(0,10,2))
        b.print_results()

    def bench_beale(self):
        s = funcs.Beale()
    #    print "checking gradient", scipy.optimize.check_grad(s.fun, s.der, np.array([1.1, -2.3]))
        b = _BenchOptimizers("Beale's function",
                             fun=s.fun, der=s.der, hess=None)
        for i in range(10):
            b.bench_run(np.random.uniform(0,10,2))
        b.print_results()

    def bench_LJ(self):
        s = funcs.LJ()
    #    print "checking gradient", scipy.optimize.check_grad(s.get_energy, s.get_gradient, np.random.uniform(-2,2,3*4))
        natoms = 4
        b = _BenchOptimizers("%d atom Lennard Jones potential" % (natoms),
                             fun=s.get_energy, der=s.get_gradient, hess=None)
        for i in range(10):
            b.bench_run(np.random.uniform(-2,2,natoms*3))
        b.print_results()


#def main():
#    bench_rosenbrock()
#    bench_simple_quadratic()
#    bench_asymetric_quadratic()
#    bench_sin_1d()
#    bench_booth()
#    bench_beale()
#    bench_LJ()

if __name__ == "__main__":
    Tester().bench(extra_argv=dict())