1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
|
"""
dltisys - Code related to discrete linear time-invariant systems
"""
# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# April 4, 2011
from __future__ import division, print_function, absolute_import
import numpy as np
from scipy.interpolate import interp1d
from .ltisys import tf2ss, zpk2ss
__all__ = ['dlsim', 'dstep', 'dimpulse']
def dlsim(system, u, t=None, x0=None):
"""
Simulate output of a discrete-time linear system.
Parameters
----------
system : class instance or tuple
An instance of the LTI class, or a tuple describing the system.
The following gives the number of elements in the tuple and
the interpretation:
- 3: (num, den, dt)
- 4: (zeros, poles, gain, dt)
- 5: (A, B, C, D, dt)
u : array_like
An input array describing the input at each time `t` (interpolation is
assumed between given times). If there are multiple inputs, then each
column of the rank-2 array represents an input.
t : array_like, optional
The time steps at which the input is defined. If `t` is given, the
final value in `t` determines the number of steps returned in the
output.
x0 : arry_like, optional
The initial conditions on the state vector (zero by default).
Returns
-------
tout : ndarray
Time values for the output, as a 1-D array.
yout : ndarray
System response, as a 1-D array.
xout : ndarray, optional
Time-evolution of the state-vector. Only generated if the input is a
state-space systems.
See Also
--------
lsim, dstep, dimpulse, cont2discrete
Examples
--------
A simple integrator transfer function with a discrete time step of 1.0
could be implemented as:
>>> from scipy import signal
>>> tf = ([1.0,], [1.0, -1.0], 1.0)
>>> t_in = [0.0, 1.0, 2.0, 3.0]
>>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
>>> t_out, y = signal.dlsim(tf, u, t=t_in)
>>> y
array([ 0., 0., 0., 1.])
"""
if len(system) == 3:
a, b, c, d = tf2ss(system[0], system[1])
dt = system[2]
elif len(system) == 4:
a, b, c, d = zpk2ss(system[0], system[1], system[2])
dt = system[3]
elif len(system) == 5:
a, b, c, d, dt = system
else:
raise ValueError("System argument should be a discrete transfer " +
"function, zeros-poles-gain specification, or " +
"state-space system")
if t is None:
out_samples = max(u.shape)
stoptime = (out_samples - 1) * dt
else:
stoptime = t[-1]
out_samples = int(np.floor(stoptime / dt)) + 1
# Pre-build output arrays
xout = np.zeros((out_samples, a.shape[0]))
yout = np.zeros((out_samples, c.shape[0]))
tout = np.linspace(0.0, stoptime, num=out_samples)
# Check initial condition
if x0 is None:
xout[0,:] = np.zeros((a.shape[1],))
else:
xout[0,:] = np.asarray(x0)
# Pre-interpolate inputs into the desired time steps
if t is None:
u_dt = u
else:
if len(u.shape) == 1:
u = u[:, np.newaxis]
u_dt_interp = interp1d(t, u.transpose(), copy=False, bounds_error=True)
u_dt = u_dt_interp(tout).transpose()
# Simulate the system
for i in range(0, out_samples - 1):
xout[i+1,:] = np.dot(a, xout[i,:]) + np.dot(b, u_dt[i,:])
yout[i,:] = np.dot(c, xout[i,:]) + np.dot(d, u_dt[i,:])
# Last point
yout[out_samples-1,:] = np.dot(c, xout[out_samples-1,:]) + \
np.dot(d, u_dt[out_samples-1,:])
if len(system) == 5:
return tout, yout, xout
else:
return tout, yout
def dimpulse(system, x0=None, t=None, n=None):
"""Impulse response of discrete-time system.
Parameters
----------
system : tuple
The following gives the number of elements in the tuple and
the interpretation:
* 3: (num, den, dt)
* 4: (zeros, poles, gain, dt)
* 5: (A, B, C, D, dt)
x0 : array_like, optional
Initial state-vector. Defaults to zero.
t : array_like, optional
Time points. Computed if not given.
n : int, optional
The number of time points to compute (if `t` is not given).
Returns
-------
t : ndarray
A 1-D array of time points.
yout : tuple of array_like
Impulse response of system. Each element of the tuple represents
the output of the system based on an impulse in each input.
See Also
--------
impulse, dstep, dlsim, cont2discrete
"""
# Determine the system type and set number of inputs and time steps
if len(system) == 3:
n_inputs = 1
dt = system[2]
elif len(system) == 4:
n_inputs = 1
dt = system[3]
elif len(system) == 5:
n_inputs = system[1].shape[1]
dt = system[4]
else:
raise ValueError("System argument should be a discrete transfer " +
"function, zeros-poles-gain specification, or " +
"state-space system")
# Default to 100 samples if unspecified
if n is None:
n = 100
# If time is not specified, use the number of samples
# and system dt
if t is None:
t = np.linspace(0, n * dt, n, endpoint=False)
# For each input, implement a step change
yout = None
for i in range(0, n_inputs):
u = np.zeros((t.shape[0], n_inputs))
u[0,i] = 1.0
one_output = dlsim(system, u, t=t, x0=x0)
if yout is None:
yout = (one_output[1],)
else:
yout = yout + (one_output[1],)
tout = one_output[0]
return tout, yout
def dstep(system, x0=None, t=None, n=None):
"""Step response of discrete-time system.
Parameters
----------
system : a tuple describing the system.
The following gives the number of elements in the tuple and
the interpretation:
* 3: (num, den, dt)
* 4: (zeros, poles, gain, dt)
* 5: (A, B, C, D, dt)
x0 : array_like, optional
Initial state-vector (default is zero).
t : array_like, optional
Time points (computed if not given).
n : int, optional
Number of time points to compute if `t` is not given.
Returns
-------
t : ndarray
Output time points, as a 1-D array.
yout : tuple of array_like
Step response of system. Each element of the tuple represents
the output of the system based on a step response to each input.
See Also
--------
step, dimpulse, dlsim, cont2discrete
"""
# Determine the system type and set number of inputs and time steps
if len(system) == 3:
n_inputs = 1
dt = system[2]
elif len(system) == 4:
n_inputs = 1
dt = system[3]
elif len(system) == 5:
n_inputs = system[1].shape[1]
dt = system[4]
else:
raise ValueError("System argument should be a discrete transfer " +
"function, zeros-poles-gain specification, or " +
"state-space system")
# Default to 100 samples if unspecified
if n is None:
n = 100
# If time is not specified, use the number of samples
# and system dt
if t is None:
t = np.linspace(0, n * dt, n, endpoint=False)
# For each input, implement a step change
yout = None
for i in range(0, n_inputs):
u = np.zeros((t.shape[0], n_inputs))
u[:,i] = np.ones((t.shape[0],))
one_output = dlsim(system, u, t=t, x0=x0)
if yout is None:
yout = (one_output[1],)
else:
yout = yout + (one_output[1],)
tout = one_output[0]
return tout, yout
|