File: dltisys.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (273 lines) | stat: -rw-r--r-- 7,887 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
dltisys - Code related to discrete linear time-invariant systems
"""

# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# April 4, 2011
from __future__ import division, print_function, absolute_import

import numpy as np
from scipy.interpolate import interp1d
from .ltisys import tf2ss, zpk2ss

__all__ = ['dlsim', 'dstep', 'dimpulse']


def dlsim(system, u, t=None, x0=None):
    """
    Simulate output of a discrete-time linear system.

    Parameters
    ----------
    system : class instance or tuple
        An instance of the LTI class, or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

          - 3: (num, den, dt)
          - 4: (zeros, poles, gain, dt)
          - 5: (A, B, C, D, dt)

    u : array_like
        An input array describing the input at each time `t` (interpolation is
        assumed between given times).  If there are multiple inputs, then each
        column of the rank-2 array represents an input.
    t : array_like, optional
        The time steps at which the input is defined.  If `t` is given, the
        final value in `t` determines the number of steps returned in the
        output.
    x0 : arry_like, optional
        The initial conditions on the state vector (zero by default).

    Returns
    -------
    tout : ndarray
        Time values for the output, as a 1-D array.
    yout : ndarray
        System response, as a 1-D array.
    xout : ndarray, optional
        Time-evolution of the state-vector.  Only generated if the input is a
        state-space systems.

    See Also
    --------
    lsim, dstep, dimpulse, cont2discrete

    Examples
    --------
    A simple integrator transfer function with a discrete time step of 1.0
    could be implemented as:

    >>> from scipy import signal
    >>> tf = ([1.0,], [1.0, -1.0], 1.0)
    >>> t_in = [0.0, 1.0, 2.0, 3.0]
    >>> u = np.asarray([0.0, 0.0, 1.0, 1.0])
    >>> t_out, y = signal.dlsim(tf, u, t=t_in)
    >>> y
    array([ 0.,  0.,  0.,  1.])

    """
    if len(system) == 3:
        a, b, c, d = tf2ss(system[0], system[1])
        dt = system[2]
    elif len(system) == 4:
        a, b, c, d = zpk2ss(system[0], system[1], system[2])
        dt = system[3]
    elif len(system) == 5:
        a, b, c, d, dt = system
    else:
        raise ValueError("System argument should be a discrete transfer " +
                         "function, zeros-poles-gain specification, or " +
                         "state-space system")

    if t is None:
        out_samples = max(u.shape)
        stoptime = (out_samples - 1) * dt
    else:
        stoptime = t[-1]
        out_samples = int(np.floor(stoptime / dt)) + 1

    # Pre-build output arrays
    xout = np.zeros((out_samples, a.shape[0]))
    yout = np.zeros((out_samples, c.shape[0]))
    tout = np.linspace(0.0, stoptime, num=out_samples)

    # Check initial condition
    if x0 is None:
        xout[0,:] = np.zeros((a.shape[1],))
    else:
        xout[0,:] = np.asarray(x0)

    # Pre-interpolate inputs into the desired time steps
    if t is None:
        u_dt = u
    else:
        if len(u.shape) == 1:
            u = u[:, np.newaxis]

        u_dt_interp = interp1d(t, u.transpose(), copy=False, bounds_error=True)
        u_dt = u_dt_interp(tout).transpose()

    # Simulate the system
    for i in range(0, out_samples - 1):
        xout[i+1,:] = np.dot(a, xout[i,:]) + np.dot(b, u_dt[i,:])
        yout[i,:] = np.dot(c, xout[i,:]) + np.dot(d, u_dt[i,:])

    # Last point
    yout[out_samples-1,:] = np.dot(c, xout[out_samples-1,:]) + \
                            np.dot(d, u_dt[out_samples-1,:])

    if len(system) == 5:
        return tout, yout, xout
    else:
        return tout, yout


def dimpulse(system, x0=None, t=None, n=None):
    """Impulse response of discrete-time system.

    Parameters
    ----------
    system : tuple
        The following gives the number of elements in the tuple and
        the interpretation:

          * 3: (num, den, dt)
          * 4: (zeros, poles, gain, dt)
          * 5: (A, B, C, D, dt)

    x0 : array_like, optional
        Initial state-vector.  Defaults to zero.
    t : array_like, optional
        Time points.  Computed if not given.
    n : int, optional
        The number of time points to compute (if `t` is not given).

    Returns
    -------
    t : ndarray
        A 1-D array of time points.
    yout : tuple of array_like
        Impulse response of system.  Each element of the tuple represents
        the output of the system based on an impulse in each input.

    See Also
    --------
    impulse, dstep, dlsim, cont2discrete

    """
    # Determine the system type and set number of inputs and time steps
    if len(system) == 3:
        n_inputs = 1
        dt = system[2]
    elif len(system) == 4:
        n_inputs = 1
        dt = system[3]
    elif len(system) == 5:
        n_inputs = system[1].shape[1]
        dt = system[4]
    else:
        raise ValueError("System argument should be a discrete transfer " +
                         "function, zeros-poles-gain specification, or " +
                         "state-space system")

    # Default to 100 samples if unspecified
    if n is None:
        n = 100

    # If time is not specified, use the number of samples
    # and system dt
    if t is None:
        t = np.linspace(0, n * dt, n, endpoint=False)

    # For each input, implement a step change
    yout = None
    for i in range(0, n_inputs):
        u = np.zeros((t.shape[0], n_inputs))
        u[0,i] = 1.0

        one_output = dlsim(system, u, t=t, x0=x0)

        if yout is None:
            yout = (one_output[1],)
        else:
            yout = yout + (one_output[1],)

        tout = one_output[0]

    return tout, yout


def dstep(system, x0=None, t=None, n=None):
    """Step response of discrete-time system.

    Parameters
    ----------
    system : a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

          * 3: (num, den, dt)
          * 4: (zeros, poles, gain, dt)
          * 5: (A, B, C, D, dt)

    x0 : array_like, optional
        Initial state-vector (default is zero).
    t : array_like, optional
        Time points (computed if not given).
    n : int, optional
        Number of time points to compute if `t` is not given.

    Returns
    -------
    t : ndarray
        Output time points, as a 1-D array.
    yout : tuple of array_like
        Step response of system.  Each element of the tuple represents
        the output of the system based on a step response to each input.

    See Also
    --------
    step, dimpulse, dlsim, cont2discrete

    """
    # Determine the system type and set number of inputs and time steps
    if len(system) == 3:
        n_inputs = 1
        dt = system[2]
    elif len(system) == 4:
        n_inputs = 1
        dt = system[3]
    elif len(system) == 5:
        n_inputs = system[1].shape[1]
        dt = system[4]
    else:
        raise ValueError("System argument should be a discrete transfer " +
                         "function, zeros-poles-gain specification, or " +
                         "state-space system")

    # Default to 100 samples if unspecified
    if n is None:
        n = 100

    # If time is not specified, use the number of samples
    # and system dt
    if t is None:
        t = np.linspace(0, n * dt, n, endpoint=False)

    # For each input, implement a step change
    yout = None
    for i in range(0, n_inputs):
        u = np.zeros((t.shape[0], n_inputs))
        u[:,i] = np.ones((t.shape[0],))

        one_output = dlsim(system, u, t=t, x0=x0)

        if yout is None:
            yout = (one_output[1],)
        else:
            yout = yout + (one_output[1],)

        tout = one_output[0]

    return tout, yout