1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
|
#define NO_IMPORT_ARRAY
#include "sigtools.h"
static int elsizes[] = {sizeof(Bool),
sizeof(byte),
sizeof(ubyte),
sizeof(short),
sizeof(ushort),
sizeof(int),
sizeof(uint),
sizeof(long),
sizeof(ulong),
sizeof(longlong),
sizeof(ulonglong),
sizeof(float),
sizeof(double),
sizeof(longdouble),
sizeof(cfloat),
sizeof(cdouble),
sizeof(clongdouble),
sizeof(void *),
0,0,0,0};
typedef void (OneMultAddFunction) (char *, char *, intp, char **, intp);
#define MAKE_ONEMULTADD(fname, type) \
static void fname ## _onemultadd(char *sum, char *term1, intp str, char **pvals, intp n) { \
intp k; \
type dsum = *(type*)sum; \
for (k=0; k < n; k++) { \
type tmp = *(type*)(term1 + k * str); \
dsum += tmp * *(type*)pvals[k]; \
} \
*(type*)(sum) = dsum; \
}
MAKE_ONEMULTADD(UBYTE, ubyte)
MAKE_ONEMULTADD(USHORT, ushort)
MAKE_ONEMULTADD(UINT, uint)
MAKE_ONEMULTADD(ULONG, ulong)
MAKE_ONEMULTADD(ULONGLONG, ulonglong)
MAKE_ONEMULTADD(BYTE, byte)
MAKE_ONEMULTADD(SHORT, short)
MAKE_ONEMULTADD(INT, int)
MAKE_ONEMULTADD(LONG, long)
MAKE_ONEMULTADD(LONGLONG, longlong)
MAKE_ONEMULTADD(FLOAT, float)
MAKE_ONEMULTADD(DOUBLE, double)
MAKE_ONEMULTADD(LONGDOUBLE, longdouble)
#ifdef __GNUC__
MAKE_ONEMULTADD(CFLOAT, __complex__ float)
MAKE_ONEMULTADD(CDOUBLE, __complex__ double)
MAKE_ONEMULTADD(CLONGDOUBLE, __complex__ long double)
#else
#define MAKE_C_ONEMULTADD(fname, type) \
static void fname ## _onemultadd2(char *sum, char *term1, char *term2) { \
((type *) sum)[0] += ((type *) term1)[0] * ((type *) term2)[0] \
- ((type *) term1)[1] * ((type *) term2)[1]; \
((type *) sum)[1] += ((type *) term1)[0] * ((type *) term2)[1] \
+ ((type *) term1)[1] * ((type *) term2)[0]; \
return; }
#define MAKE_C_ONEMULTADD2(fname, type) \
static void fname ## _onemultadd(char *sum, char *term1, intp str, char **pvals, intp n) { \
intp k; \
for (k=0; k < n; k++) { \
fname ## _onemultadd2(sum, term1 + k * str, pvals[k]); \
} \
}
MAKE_C_ONEMULTADD(CFLOAT, float)
MAKE_C_ONEMULTADD(CDOUBLE, double)
MAKE_C_ONEMULTADD(CLONGDOUBLE, longdouble)
MAKE_C_ONEMULTADD2(CFLOAT, float)
MAKE_C_ONEMULTADD2(CDOUBLE, double)
MAKE_C_ONEMULTADD2(CLONGDOUBLE, longdouble)
#endif /* __GNUC__ */
static OneMultAddFunction *OneMultAdd[]={NULL,
BYTE_onemultadd,
UBYTE_onemultadd,
SHORT_onemultadd,
USHORT_onemultadd,
INT_onemultadd,
UINT_onemultadd,
LONG_onemultadd,
ULONG_onemultadd,
LONGLONG_onemultadd,
ULONGLONG_onemultadd,
FLOAT_onemultadd,
DOUBLE_onemultadd,
LONGDOUBLE_onemultadd,
CFLOAT_onemultadd,
CDOUBLE_onemultadd,
CLONGDOUBLE_onemultadd,
NULL, NULL, NULL, NULL};
/* This could definitely be more optimized... */
int pylab_convolve_2d (char *in, /* Input data Ns[0] x Ns[1] */
intp *instr, /* Input strides */
char *out, /* Output data */
intp *outstr, /* Ouput strides */
char *hvals, /* coefficients in filter */
intp *hstr, /* coefficients strides */
intp *Nwin, /* Size of kernel Nwin[0] x Nwin[1] */
intp *Ns, /* Size of image Ns[0] x Ns[1] */
int flag, /* convolution parameters */
char *fillvalue) /* fill value */
{
int bounds_pad_flag = 0;
int m, n, j, ind0, ind1;
int Os[2];
int new_m, new_n, ind0_memory=0;
int boundary, outsize, convolve, type_num, type_size;
char ** indices;
OneMultAddFunction *mult_and_add;
boundary = flag & BOUNDARY_MASK; /* flag can be fill, reflecting, circular */
outsize = flag & OUTSIZE_MASK;
convolve = flag & FLIP_MASK;
type_num = (flag & TYPE_MASK) >> TYPE_SHIFT;
/*type_size*/
mult_and_add = OneMultAdd[type_num];
if (mult_and_add == NULL) return -5; /* Not available for this type */
if (type_num < 0 || type_num > MAXTYPES) return -4; /* Invalid type */
type_size = elsizes[type_num];
indices = malloc(Nwin[1] * sizeof(indices[0]));
if (indices == NULL) return -3; /* No memory */
if (outsize == FULL) {Os[0] = Ns[0]+Nwin[0]-1; Os[1] = Ns[1]+Nwin[1]-1;}
else if (outsize == SAME) {Os[0] = Ns[0]; Os[1] = Ns[1];}
else if (outsize == VALID) {Os[0] = Ns[0]-Nwin[0]+1; Os[1] = Ns[1]-Nwin[1]+1;}
else return -1; /* Invalid output flag */
if ((boundary != PAD) && (boundary != REFLECT) && (boundary != CIRCULAR))
return -2; /* Invalid boundary flag */
/* Speed this up by not doing any if statements in the for loop. Need 3*3*2=18 different
loops executed for different conditions */
for (m=0; m < Os[0]; m++) {
/* Reposition index into input image based on requested output size */
if (outsize == FULL) new_m = convolve ? m : (m-Nwin[0]+1);
else if (outsize == SAME) new_m = convolve ? (m+((Nwin[0]-1)>>1)) : (m-((Nwin[0]-1) >> 1));
else new_m = convolve ? (m+Nwin[0]-1) : m; /* VALID */
for (n=0; n < Os[1]; n++) { /* loop over columns */
char * sum = out+m*outstr[0]+n*outstr[1];
memset(sum, 0, type_size); /* sum = 0.0; */
if (outsize == FULL) new_n = convolve ? n : (n-Nwin[1]+1);
else if (outsize == SAME) new_n = convolve ? (n+((Nwin[1]-1)>>1)) : (n-((Nwin[1]-1) >> 1));
else new_n = convolve ? (n+Nwin[1]-1) : n;
/* Sum over kernel, if index into image is out of bounds
handle it according to boundary flag */
for (j=0; j < Nwin[0]; j++) {
ind0 = convolve ? (new_m-j): (new_m+j);
bounds_pad_flag = 0;
if (ind0 < 0) {
if (boundary == REFLECT) ind0 = -1-ind0;
else if (boundary == CIRCULAR) ind0 = Ns[0] + ind0;
else bounds_pad_flag = 1;
}
else if (ind0 >= Ns[0]) {
if (boundary == REFLECT) ind0 = Ns[0]+Ns[0]-1-ind0;
else if (boundary == CIRCULAR) ind0 = ind0 - Ns[0];
else bounds_pad_flag = 1;
}
if (!bounds_pad_flag) ind0_memory = ind0*instr[0];
if (bounds_pad_flag) {
intp k;
for (k=0; k < Nwin[1]; k++) {
indices[k] = fillvalue;
}
}
else {
intp k;
for (k=0; k < Nwin[1]; k++) {
ind1 = convolve ? (new_n-k) : (new_n+k);
if (ind1 < 0) {
if (boundary == REFLECT) ind1 = -1-ind1;
else if (boundary == CIRCULAR) ind1 = Ns[1] + ind1;
else bounds_pad_flag = 1;
}
else if (ind1 >= Ns[1]) {
if (boundary == REFLECT) ind1 = Ns[1]+Ns[1]-1-ind1;
else if (boundary == CIRCULAR) ind1 = ind1 - Ns[1];
else bounds_pad_flag = 1;
}
if (bounds_pad_flag) {
indices[k] = fillvalue;
}
else {
indices[k] = in+ind0_memory+ind1*instr[1];
}
bounds_pad_flag = 0;
}
}
mult_and_add(sum, hvals+j*hstr[0], hstr[1], indices, Nwin[1]);
}
}
}
free(indices);
return 0;
}
|