File: ltisys.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (1092 lines) | stat: -rw-r--r-- 30,979 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
"""
ltisys -- a collection of classes and functions for modeling linear
time invariant systems.
"""
from __future__ import division, print_function, absolute_import

#
# Author: Travis Oliphant 2001
#
# Feb 2010: Warren Weckesser
#   Rewrote lsim2 and added impulse2.
# Aug 2013: Juan Luis Cano
#   Rewrote abcd_normalize.
#

from .filter_design import tf2zpk, zpk2tf, normalize, freqs
import numpy
from numpy import product, zeros, array, dot, transpose, ones, \
    nan_to_num, zeros_like, linspace
import scipy.interpolate as interpolate
import scipy.integrate as integrate
import scipy.linalg as linalg
from scipy.lib.six import xrange
from numpy import r_, eye, real, atleast_1d, atleast_2d, poly, \
     squeeze, diag, asarray

__all__ = ['tf2ss', 'ss2tf', 'abcd_normalize', 'zpk2ss', 'ss2zpk', 'lti',
           'lsim', 'lsim2', 'impulse', 'impulse2', 'step', 'step2', 'bode',
           'freqresp']


def tf2ss(num, den):
    """Transfer function to state-space representation.

    Parameters
    ----------
    num, den : array_like
        Sequences representing the numerator and denominator polynomials.
        The denominator needs to be at least as long as the numerator.

    Returns
    -------
    A, B, C, D : ndarray
        State space representation of the system, in controller canonical
        form.

    """
    # Controller canonical state-space representation.
    #  if M+1 = len(num) and K+1 = len(den) then we must have M <= K
    #  states are found by asserting that X(s) = U(s) / D(s)
    #  then Y(s) = N(s) * X(s)
    #
    #   A, B, C, and D follow quite naturally.
    #
    num, den = normalize(num, den)   # Strips zeros, checks arrays
    nn = len(num.shape)
    if nn == 1:
        num = asarray([num], num.dtype)
    M = num.shape[1]
    K = len(den)
    if M > K:
        msg = "Improper transfer function. `num` is longer than `den`."
        raise ValueError(msg)
    if M == 0 or K == 0:  # Null system
        return array([], float), array([], float), array([], float), \
               array([], float)

    # pad numerator to have same number of columns has denominator
    num = r_['-1', zeros((num.shape[0], K - M), num.dtype), num]

    if num.shape[-1] > 0:
        D = num[:, 0]
    else:
        D = array([], float)

    if K == 1:
        return array([], float), array([], float), array([], float), D

    frow = -array([den[1:]])
    A = r_[frow, eye(K - 2, K - 1)]
    B = eye(K - 1, 1)
    C = num[:, 1:] - num[:, 0] * den[1:]
    return A, B, C, D


def _none_to_empty_2d(arg):
    if arg is None:
        return zeros((0, 0))
    else:
        return arg


def _atleast_2d_or_none(arg):
    if arg is not None:
        return atleast_2d(arg)


def _shape_or_none(M):
    if M is not None:
        return M.shape
    else:
        return (None,) * 2


def _choice_not_none(*args):
    for arg in args:
        if arg is not None:
            return arg


def _restore(M, shape):
    if M.shape == (0, 0):
        return zeros(shape)
    else:
        if M.shape != shape:
            raise ValueError("The input arrays have incompatible shapes.")
        return M


def abcd_normalize(A=None, B=None, C=None, D=None):
    """Check state-space matrices and ensure they are rank-2.

    If enough information on the system is provided, that is, enough
    properly-shaped arrays are passed to the function, the missing ones
    are built from this information, ensuring the correct number of
    rows and columns. Otherwise a ValueError is raised.

    Parameters
    ----------
    A, B, C, D : array_like, optional
        State-space matrices. All of them are None (missing) by default.

    Returns
    -------
    A, B, C, D : array
        Properly shaped state-space matrices.

    Raises
    ------
    ValueError
        If not enough information on the system was provided.

    """
    A, B, C, D = map(_atleast_2d_or_none, (A, B, C, D))

    MA, NA = _shape_or_none(A)
    MB, NB = _shape_or_none(B)
    MC, NC = _shape_or_none(C)
    MD, ND = _shape_or_none(D)

    p = _choice_not_none(MA, MB, NC)
    q = _choice_not_none(NB, ND)
    r = _choice_not_none(MC, MD)
    if p is None or q is None or r is None:
        raise ValueError("Not enough information on the system.")

    A, B, C, D = map(_none_to_empty_2d, (A, B, C, D))
    A = _restore(A, (p, p))
    B = _restore(B, (p, q))
    C = _restore(C, (r, p))
    D = _restore(D, (r, q))

    return A, B, C, D


def ss2tf(A, B, C, D, input=0):
    """State-space to transfer function.

    Parameters
    ----------
    A, B, C, D : ndarray
        State-space representation of linear system.
    input : int, optional
        For multiple-input systems, the input to use.

    Returns
    -------
    num : 2-D ndarray
        Numerator(s) of the resulting transfer function(s).  `num` has one row
        for each of the system's outputs. Each row is a sequence representation
        of the numerator polynomial.
    den : 1-D ndarray
        Denominator of the resulting transfer function(s).  `den` is a sequence
        representation of the denominator polynomial.

    """
    # transfer function is C (sI - A)**(-1) B + D
    A, B, C, D = map(asarray, (A, B, C, D))
    # Check consistency and make them all rank-2 arrays
    A, B, C, D = abcd_normalize(A, B, C, D)

    nout, nin = D.shape
    if input >= nin:
        raise ValueError("System does not have the input specified.")

    # make MOSI from possibly MOMI system.
    if B.shape[-1] != 0:
        B = B[:, input]
    B.shape = (B.shape[0], 1)
    if D.shape[-1] != 0:
        D = D[:, input]

    try:
        den = poly(A)
    except ValueError:
        den = 1

    if (product(B.shape, axis=0) == 0) and (product(C.shape, axis=0) == 0):
        num = numpy.ravel(D)
        if (product(D.shape, axis=0) == 0) and (product(A.shape, axis=0) == 0):
            den = []
        return num, den

    num_states = A.shape[0]
    type_test = A[:, 0] + B[:, 0] + C[0, :] + D
    num = numpy.zeros((nout, num_states + 1), type_test.dtype)
    for k in range(nout):
        Ck = atleast_2d(C[k, :])
        num[k] = poly(A - dot(B, Ck)) + (D[k] - 1) * den

    return num, den


def zpk2ss(z, p, k):
    """Zero-pole-gain representation to state-space representation

    Parameters
    ----------
    z, p : sequence
        Zeros and poles.
    k : float
        System gain.

    Returns
    -------
    A, B, C, D : ndarray
        State space representation of the system, in controller canonical
        form.

    """
    return tf2ss(*zpk2tf(z, p, k))


def ss2zpk(A, B, C, D, input=0):
    """State-space representation to zero-pole-gain representation.

    Parameters
    ----------
    A, B, C, D : ndarray
        State-space representation of linear system.
    input : int, optional
        For multiple-input systems, the input to use.

    Returns
    -------
    z, p : sequence
        Zeros and poles.
    k : float
        System gain.

    """
    return tf2zpk(*ss2tf(A, B, C, D, input=input))


class lti(object):
    """Linear Time Invariant class which simplifies representation.

    Parameters
    ----------
    args : arguments
        The `lti` class can be instantiated with either 2, 3 or 4 arguments.
        The following gives the number of elements in the tuple and the
        interpretation:

            * 2: (numerator, denominator)
            * 3: (zeros, poles, gain)
            * 4: (A, B, C, D)

        Each argument can be an array or sequence.

    Notes
    -----
    `lti` instances have all types of representations available; for example
    after creating an instance s with ``(zeros, poles, gain)`` the transfer
    function representation (numerator, denominator) can be accessed as
    ``s.num`` and ``s.den``.

    """
    def __init__(self, *args, **kwords):
        """
        Initialize the LTI system using either:

            - (numerator, denominator)
            - (zeros, poles, gain)
            - (A, B, C, D) : state-space.

        """
        N = len(args)
        if N == 2:  # Numerator denominator transfer function input
            self._num, self._den = normalize(*args)
            self._update(N)
            self.inputs = 1
            if len(self.num.shape) > 1:
                self.outputs = self.num.shape[0]
            else:
                self.outputs = 1
        elif N == 3:      # Zero-pole-gain form
            self._zeros, self._poles, self._gain = args
            self._update(N)
            # make sure we have numpy arrays
            self.zeros = numpy.asarray(self.zeros)
            self.poles = numpy.asarray(self.poles)
            self.inputs = 1
            if len(self.zeros.shape) > 1:
                self.outputs = self.zeros.shape[0]
            else:
                self.outputs = 1
        elif N == 4:       # State-space form
            self._A, self._B, self._C, self._D = abcd_normalize(*args)
            self._update(N)
            self.inputs = self.B.shape[-1]
            self.outputs = self.C.shape[0]
        else:
            raise ValueError("Needs 2, 3, or 4 arguments.")

    def __repr__(self):
        """
        Canonical representation using state-space to preserve numerical
        precision and any MIMO information
        """
        return '{0}(\n{1},\n{2},\n{3},\n{4}\n)'.format(
            self.__class__.__name__,
            repr(self.A),
            repr(self.B),
            repr(self.C),
            repr(self.D),
            )

    @property
    def num(self):
        return self._num

    @num.setter
    def num(self, value):
        self._num = value
        self._update(2)

    @property
    def den(self):
        return self._den

    @den.setter
    def den(self, value):
        self._den = value
        self._update(2)

    @property
    def zeros(self):
        return self._zeros

    @zeros.setter
    def zeros(self, value):
        self._zeros = value
        self._update(3)

    @property
    def poles(self):
        return self._poles

    @poles.setter
    def poles(self, value):
        self._poles = value
        self._update(3)

    @property
    def gain(self):
        return self._gain

    @gain.setter
    def gain(self, value):
        self._gain = value
        self._update(3)

    @property
    def A(self):
        return self._A

    @A.setter
    def A(self, value):
        self._A = value
        self._update(4)

    @property
    def B(self):
        return self._B

    @B.setter
    def B(self, value):
        self._B = value
        self._update(4)

    @property
    def C(self):
        return self._C

    @C.setter
    def C(self, value):
        self._C = value
        self._update(4)

    @property
    def D(self):
        return self._D

    @D.setter
    def D(self, value):
        self._D = value
        self._update(4)

    def _update(self, N):
        if N == 2:
            self._zeros, self._poles, self._gain = tf2zpk(self.num, self.den)
            self._A, self._B, self._C, self._D = tf2ss(self.num, self.den)
        if N == 3:
            self._num, self._den = zpk2tf(self.zeros, self.poles, self.gain)
            self._A, self._B, self._C, self._D = zpk2ss(self.zeros,
                                                        self.poles, self.gain)
        if N == 4:
            self._num, self._den = ss2tf(self.A, self.B, self.C, self.D)
            self._zeros, self._poles, self._gain = ss2zpk(self.A, self.B,
                                                          self.C, self.D)

    def impulse(self, X0=None, T=None, N=None):
        return impulse(self, X0=X0, T=T, N=N)

    def step(self, X0=None, T=None, N=None):
        return step(self, X0=X0, T=T, N=N)

    def output(self, U, T, X0=None):
        return lsim(self, U, T, X0=X0)

    def bode(self, w=None, n=100):
        """
        Calculate Bode magnitude and phase data.

        Returns a 3-tuple containing arrays of frequencies [rad/s], magnitude
        [dB] and phase [deg]. See scipy.signal.bode for details.

        .. versionadded:: 0.11.0

        Examples
        --------
        >>> from scipy import signal
        >>> import matplotlib.pyplot as plt

        >>> s1 = signal.lti([1], [1, 1])
        >>> w, mag, phase = s1.bode()

        >>> plt.figure()
        >>> plt.semilogx(w, mag)    # Bode magnitude plot
        >>> plt.figure()
        >>> plt.semilogx(w, phase)  # Bode phase plot
        >>> plt.show()

        """
        return bode(self, w=w, n=n)

    def freqresp(self, w=None, n=10000):
        """Calculate the frequency response of a continuous-time system.

        Returns a 2-tuple containing arrays of frequencies [rad/s] and
        complex magnitude.
        See scipy.signal.freqresp for details.

        """
        return freqresp(self, w=w, n=n)


def lsim2(system, U=None, T=None, X0=None, **kwargs):
    """
    Simulate output of a continuous-time linear system, by using
    the ODE solver `scipy.integrate.odeint`.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

        * 2: (num, den)
        * 3: (zeros, poles, gain)
        * 4: (A, B, C, D)

    U : array_like (1D or 2D), optional
        An input array describing the input at each time T.  Linear
        interpolation is used between given times.  If there are
        multiple inputs, then each column of the rank-2 array
        represents an input.  If U is not given, the input is assumed
        to be zero.
    T : array_like (1D or 2D), optional
        The time steps at which the input is defined and at which the
        output is desired.  The default is 101 evenly spaced points on
        the interval [0,10.0].
    X0 : array_like (1D), optional
        The initial condition of the state vector.  If `X0` is not
        given, the initial conditions are assumed to be 0.
    kwargs : dict
        Additional keyword arguments are passed on to the function
        `odeint`.  See the notes below for more details.

    Returns
    -------
    T : 1D ndarray
        The time values for the output.
    yout : ndarray
        The response of the system.
    xout : ndarray
        The time-evolution of the state-vector.

    Notes
    -----
    This function uses `scipy.integrate.odeint` to solve the
    system's differential equations.  Additional keyword arguments
    given to `lsim2` are passed on to `odeint`.  See the documentation
    for `scipy.integrate.odeint` for the full list of arguments.

    """
    if isinstance(system, lti):
        sys = system
    else:
        sys = lti(*system)

    if X0 is None:
        X0 = zeros(sys.B.shape[0], sys.A.dtype)

    if T is None:
        # XXX T should really be a required argument, but U was
        # changed from a required positional argument to a keyword,
        # and T is after U in the argument list.  So we either: change
        # the API and move T in front of U; check here for T being
        # None and raise an exception; or assign a default value to T
        # here.  This code implements the latter.
        T = linspace(0, 10.0, 101)

    T = atleast_1d(T)
    if len(T.shape) != 1:
        raise ValueError("T must be a rank-1 array.")

    if U is not None:
        U = atleast_1d(U)
        if len(U.shape) == 1:
            U = U.reshape(-1, 1)
        sU = U.shape
        if sU[0] != len(T):
            raise ValueError("U must have the same number of rows "
                             "as elements in T.")

        if sU[1] != sys.inputs:
            raise ValueError("The number of inputs in U (%d) is not "
                             "compatible with the number of system "
                             "inputs (%d)" % (sU[1], sys.inputs))
        # Create a callable that uses linear interpolation to
        # calculate the input at any time.
        ufunc = interpolate.interp1d(T, U, kind='linear',
                                     axis=0, bounds_error=False)

        def fprime(x, t, sys, ufunc):
            """The vector field of the linear system."""
            return dot(sys.A, x) + squeeze(dot(sys.B, nan_to_num(ufunc([t]))))
        xout = integrate.odeint(fprime, X0, T, args=(sys, ufunc), **kwargs)
        yout = dot(sys.C, transpose(xout)) + dot(sys.D, transpose(U))
    else:
        def fprime(x, t, sys):
            """The vector field of the linear system."""
            return dot(sys.A, x)
        xout = integrate.odeint(fprime, X0, T, args=(sys,), **kwargs)
        yout = dot(sys.C, transpose(xout))

    return T, squeeze(transpose(yout)), xout


def _cast_to_array_dtype(in1, in2):
    """Cast array to dtype of other array, while avoiding ComplexWarning.

    Those can be raised when casting complex to real.
    """
    if numpy.issubdtype(in2.dtype, numpy.float):
        # dtype to cast to is not complex, so use .real
        in1 = in1.real.astype(in2.dtype)
    else:
        in1 = in1.astype(in2.dtype)

    return in1


def lsim(system, U, T, X0=None, interp=1):
    """
    Simulate output of a continuous-time linear system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

        * 2: (num, den)
        * 3: (zeros, poles, gain)
        * 4: (A, B, C, D)

    U : array_like
        An input array describing the input at each time `T`
        (interpolation is assumed between given times).  If there are
        multiple inputs, then each column of the rank-2 array
        represents an input.
    T : array_like
        The time steps at which the input is defined and at which the
        output is desired.
    X0 :
        The initial conditions on the state vector (zero by default).
    interp : {1, 0}
        Whether to use linear (1) or zero-order hold (0) interpolation.

    Returns
    -------
    T : 1D ndarray
        Time values for the output.
    yout : 1D ndarray
        System response.
    xout : ndarray
        Time-evolution of the state-vector.

    """
    if isinstance(system, lti):
        sys = system
    else:
        sys = lti(*system)
    U = atleast_1d(U)
    T = atleast_1d(T)
    if len(U.shape) == 1:
        U = U.reshape((U.shape[0], 1))
    sU = U.shape
    if len(T.shape) != 1:
        raise ValueError("T must be a rank-1 array.")
    if sU[0] != len(T):
        raise ValueError("U must have the same number of rows "
                         "as elements in T.")
    if sU[1] != sys.inputs:
        raise ValueError("System does not define that many inputs.")

    if X0 is None:
        X0 = zeros(sys.B.shape[0], sys.A.dtype)

    xout = zeros((len(T), sys.B.shape[0]), sys.A.dtype)
    xout[0] = X0
    A = sys.A
    AT, BT = transpose(sys.A), transpose(sys.B)
    dt = T[1] - T[0]
    lam, v = linalg.eig(A)
    vt = transpose(v)
    vti = linalg.inv(vt)
    GT = dot(dot(vti, diag(numpy.exp(dt * lam))), vt)
    GT = _cast_to_array_dtype(GT, xout)

    ATm1 = linalg.inv(AT)
    ATm2 = dot(ATm1, ATm1)
    I = eye(A.shape[0], dtype=A.dtype)
    GTmI = GT - I
    F1T = dot(dot(BT, GTmI), ATm1)
    if interp:
        F2T = dot(BT, dot(GTmI, ATm2) / dt - ATm1)

    for k in xrange(1, len(T)):
        dt1 = T[k] - T[k - 1]
        if dt1 != dt:
            dt = dt1
            GT = dot(dot(vti, diag(numpy.exp(dt * lam))), vt)
            GT = _cast_to_array_dtype(GT, xout)
            GTmI = GT - I
            F1T = dot(dot(BT, GTmI), ATm1)
            if interp:
                F2T = dot(BT, dot(GTmI, ATm2) / dt - ATm1)

        xout[k] = dot(xout[k - 1], GT) + dot(U[k - 1], F1T)
        if interp:
            xout[k] = xout[k] + dot((U[k] - U[k - 1]), F2T)

    yout = (squeeze(dot(U, transpose(sys.D))) +
            squeeze(dot(xout, transpose(sys.C))))
    return T, squeeze(yout), squeeze(xout)


def _default_response_times(A, n):
    """Compute a reasonable set of time samples for the response time.

    This function is used by `impulse`, `impulse2`, `step` and `step2`
    to compute the response time when the `T` argument to the function
    is None.

    Parameters
    ----------
    A : ndarray
        The system matrix, which is square.
    n : int
        The number of time samples to generate.

    Returns
    -------
    t : ndarray
        The 1-D array of length `n` of time samples at which the response
        is to be computed.
    """
    # Create a reasonable time interval.
    # TODO: This could use some more work.
    # For example, what is expected when the system is unstable?
    vals = linalg.eigvals(A)
    r = min(abs(real(vals)))
    if r == 0.0:
        r = 1.0
    tc = 1.0 / r
    t = linspace(0.0, 7 * tc, n)
    return t


def impulse(system, X0=None, T=None, N=None):
    """Impulse response of continuous-time system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple of array_like
        describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    X0 : array_like, optional
        Initial state-vector.  Defaults to zero.
    T : array_like, optional
        Time points.  Computed if not given.
    N : int, optional
        The number of time points to compute (if `T` is not given).

    Returns
    -------
    T : ndarray
        A 1-D array of time points.
    yout : ndarray
        A 1-D array containing the impulse response of the system (except for
        singularities at zero).

    """
    if isinstance(system, lti):
        sys = system
    else:
        sys = lti(*system)
    if X0 is None:
        B = sys.B
    else:
        B = sys.B + X0
    if N is None:
        N = 100
    if T is None:
        T = _default_response_times(sys.A, N)
    else:
        T = asarray(T)

    h = zeros(T.shape, sys.A.dtype)
    s, v = linalg.eig(sys.A)
    vi = linalg.inv(v)
    C = sys.C
    for k in range(len(h)):
        es = diag(numpy.exp(s * T[k]))
        eA = dot(dot(v, es), vi)
        eA = _cast_to_array_dtype(eA, h)
        h[k] = squeeze(dot(dot(C, eA), B))

    return T, h


def impulse2(system, X0=None, T=None, N=None, **kwargs):
    """
    Impulse response of a single-input, continuous-time linear system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple of array_like
        describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    X0 : 1-D array_like, optional
        The initial condition of the state vector.  Default: 0 (the
        zero vector).
    T : 1-D array_like, optional
        The time steps at which the input is defined and at which the
        output is desired.  If `T` is not given, the function will
        generate a set of time samples automatically.
    N : int, optional
        Number of time points to compute.  Default: 100.
    kwargs : various types
        Additional keyword arguments are passed on to the function
        `scipy.signal.lsim2`, which in turn passes them on to
        `scipy.integrate.odeint`; see the latter's documentation for
        information about these arguments.

    Returns
    -------
    T : ndarray
        The time values for the output.
    yout : ndarray
        The output response of the system.

    See Also
    --------
    impulse, lsim2, integrate.odeint

    Notes
    -----
    The solution is generated by calling `scipy.signal.lsim2`, which uses
    the differential equation solver `scipy.integrate.odeint`.

    .. versionadded:: 0.8.0

    Examples
    --------
    Second order system with a repeated root: x''(t) + 2*x(t) + x(t) = u(t)

    >>> from scipy import signal
    >>> system = ([1.0], [1.0, 2.0, 1.0])
    >>> t, y = signal.impulse2(system)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(t, y)

    """
    if isinstance(system, lti):
        sys = system
    else:
        sys = lti(*system)
    B = sys.B
    if B.shape[-1] != 1:
        raise ValueError("impulse2() requires a single-input system.")
    B = B.squeeze()
    if X0 is None:
        X0 = zeros_like(B)
    if N is None:
        N = 100
    if T is None:
        T = _default_response_times(sys.A, N)

    # Move the impulse in the input to the initial conditions, and then
    # solve using lsim2().
    ic = B + X0
    Tr, Yr, Xr = lsim2(sys, T=T, X0=ic, **kwargs)
    return Tr, Yr


def step(system, X0=None, T=None, N=None):
    """Step response of continuous-time system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple of array_like
        describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    X0 : array_like, optional
        Initial state-vector (default is zero).
    T : array_like, optional
        Time points (computed if not given).
    N : int
        Number of time points to compute if `T` is not given.

    Returns
    -------
    T : 1D ndarray
        Output time points.
    yout : 1D ndarray
        Step response of system.

    See also
    --------
    scipy.signal.step2

    """
    if isinstance(system, lti):
        sys = system
    else:
        sys = lti(*system)
    if N is None:
        N = 100
    if T is None:
        T = _default_response_times(sys.A, N)
    else:
        T = asarray(T)
    U = ones(T.shape, sys.A.dtype)
    vals = lsim(sys, U, T, X0=X0)
    return vals[0], vals[1]


def step2(system, X0=None, T=None, N=None, **kwargs):
    """Step response of continuous-time system.

    This function is functionally the same as `scipy.signal.step`, but
    it uses the function `scipy.signal.lsim2` to compute the step
    response.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple of array_like
        describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    X0 : array_like, optional
        Initial state-vector (default is zero).
    T : array_like, optional
        Time points (computed if not given).
    N : int
        Number of time points to compute if `T` is not given.
    kwargs : various types
        Additional keyword arguments are passed on the function
        `scipy.signal.lsim2`, which in turn passes them on to
        `scipy.integrate.odeint`.  See the documentation for
        `scipy.integrate.odeint` for information about these arguments.

    Returns
    -------
    T : 1D ndarray
        Output time points.
    yout : 1D ndarray
        Step response of system.

    See also
    --------
    scipy.signal.step

    Notes
    -----
    .. versionadded:: 0.8.0
    """
    if isinstance(system, lti):
        sys = system
    else:
        sys = lti(*system)
    if N is None:
        N = 100
    if T is None:
        T = _default_response_times(sys.A, N)
    else:
        T = asarray(T)
    U = ones(T.shape, sys.A.dtype)
    vals = lsim2(sys, U, T, X0=X0, **kwargs)
    return vals[0], vals[1]


def bode(system, w=None, n=100):
    """
    Calculate Bode magnitude and phase data of a continuous-time system.

    .. versionadded:: 0.11.0

    Parameters
    ----------
    system : an instance of the LTI class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    w : array_like, optional
        Array of frequencies (in rad/s). Magnitude and phase data is calculated
        for every value in this array. If not given a reasonable set will be
        calculated.
    n : int, optional
        Number of frequency points to compute if `w` is not given. The `n`
        frequencies are logarithmically spaced in an interval chosen to
        include the influence of the poles and zeros of the system.

    Returns
    -------
    w : 1D ndarray
        Frequency array [rad/s]
    mag : 1D ndarray
        Magnitude array [dB]
    phase : 1D ndarray
        Phase array [deg]

    Examples
    --------
    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> s1 = signal.lti([1], [1, 1])
    >>> w, mag, phase = signal.bode(s1)

    >>> plt.figure()
    >>> plt.semilogx(w, mag)    # Bode magnitude plot
    >>> plt.figure()
    >>> plt.semilogx(w, phase)  # Bode phase plot
    >>> plt.show()

    """
    w, y = freqresp(system, w=w, n=n)

    mag = 20.0 * numpy.log10(abs(y))
    phase = numpy.unwrap(numpy.arctan2(y.imag, y.real)) * 180.0 / numpy.pi

    return w, mag, phase


def freqresp(system, w=None, n=10000):
    """Calculate the frequency response of a continuous-time system.

    Parameters
    ----------
    system : an instance of the LTI class or a tuple describing the system.
        The following gives the number of elements in the tuple and
        the interpretation:

            * 2 (num, den)
            * 3 (zeros, poles, gain)
            * 4 (A, B, C, D)

    w : array_like, optional
        Array of frequencies (in rad/s). Magnitude and phase data is
        calculated for every value in this array. If not given a reasonable
        set will be calculated.
    n : int, optional
        Number of frequency points to compute if `w` is not given. The `n`
        frequencies are logarithmically spaced in an interval chosen to
        include the influence of the poles and zeros of the system.

    Returns
    -------
    w : 1D ndarray
        Frequency array [rad/s]
    H : 1D ndarray
        Array of complex magnitude values

    Examples
    --------
    # Generating the Nyquist plot of a transfer function

    >>> from scipy import signal
    >>> import matplotlib.pyplot as plt

    >>> s1 = signal.lti([], [1, 1, 1], [5])
    # transfer function: H(s) = 5 / (s-1)^3

    >>> w, H = signal.freqresp(s1)

    >>> plt.figure()
    >>> plt.plot(H.real, H.imag, "b")
    >>> plt.plot(H.real, -H.imag, "r")
    >>> plt.show()
    """
    if isinstance(system, lti):
        sys = system
    else:
        sys = lti(*system)

    if sys.inputs != 1 or sys.outputs != 1:
        raise ValueError("freqresp() requires a SISO (single input, single "
                         "output) system.")

    if w is not None:
        worN = w
    else:
        worN = n

    # In the call to freqs(), sys.num.ravel() is used because there are
    # cases where sys.num is a 2-D array with a single row.
    w, h = freqs(sys.num.ravel(), sys.den, worN=worN)

    return w, h