File: test_cont2discrete.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (274 lines) | stat: -rw-r--r-- 9,310 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
from __future__ import division, print_function, absolute_import

import numpy as np
from numpy.testing import TestCase, run_module_suite, \
                          assert_array_almost_equal, assert_almost_equal, \
                          assert_allclose

from scipy.signal import cont2discrete as c2d
from scipy.signal import dlsim, ss2tf, ss2zpk, lsim2

# Author: Jeffrey Armstrong <jeff@approximatrix.com>
# March 29, 2011


class TestC2D(TestCase):
    def test_zoh(self):
        ac = np.eye(2)
        bc = 0.5 * np.ones((2, 1))
        cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
        dc = np.array([[0.0], [0.0], [-0.33]])

        ad_truth = 1.648721270700128 * np.eye(2)
        bd_truth = 0.324360635350064 * np.ones((2, 1))
        # c and d in discrete should be equal to their continuous counterparts
        dt_requested = 0.5

        ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested, method='zoh')

        assert_array_almost_equal(ad_truth, ad)
        assert_array_almost_equal(bd_truth, bd)
        assert_array_almost_equal(cc, cd)
        assert_array_almost_equal(dc, dd)
        assert_almost_equal(dt_requested, dt)

    def test_gbt(self):
        ac = np.eye(2)
        bc = 0.5 * np.ones((2, 1))
        cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
        dc = np.array([[0.0], [0.0], [-0.33]])

        dt_requested = 0.5
        alpha = 1.0 / 3.0

        ad_truth = 1.6 * np.eye(2)
        bd_truth = 0.3 * np.ones((2, 1))
        cd_truth = np.array([[0.9, 1.2],
                             [1.2, 1.2],
                             [1.2, 0.3]])
        dd_truth = np.array([[0.175],
                             [0.2],
                             [-0.205]])

        ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
                                 method='gbt', alpha=alpha)

        assert_array_almost_equal(ad_truth, ad)
        assert_array_almost_equal(bd_truth, bd)
        assert_array_almost_equal(cd_truth, cd)
        assert_array_almost_equal(dd_truth, dd)

    def test_euler(self):
        ac = np.eye(2)
        bc = 0.5 * np.ones((2, 1))
        cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
        dc = np.array([[0.0], [0.0], [-0.33]])

        dt_requested = 0.5

        ad_truth = 1.5 * np.eye(2)
        bd_truth = 0.25 * np.ones((2, 1))
        cd_truth = np.array([[0.75, 1.0],
                             [1.0, 1.0],
                             [1.0, 0.25]])
        dd_truth = dc

        ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
                                 method='euler')

        assert_array_almost_equal(ad_truth, ad)
        assert_array_almost_equal(bd_truth, bd)
        assert_array_almost_equal(cd_truth, cd)
        assert_array_almost_equal(dd_truth, dd)
        assert_almost_equal(dt_requested, dt)

    def test_backward_diff(self):
        ac = np.eye(2)
        bc = 0.5 * np.ones((2, 1))
        cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
        dc = np.array([[0.0], [0.0], [-0.33]])

        dt_requested = 0.5

        ad_truth = 2.0 * np.eye(2)
        bd_truth = 0.5 * np.ones((2, 1))
        cd_truth = np.array([[1.5, 2.0],
                             [2.0, 2.0],
                             [2.0, 0.5]])
        dd_truth = np.array([[0.875],
                             [1.0],
                             [0.295]])

        ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
                                 method='backward_diff')

        assert_array_almost_equal(ad_truth, ad)
        assert_array_almost_equal(bd_truth, bd)
        assert_array_almost_equal(cd_truth, cd)
        assert_array_almost_equal(dd_truth, dd)

    def test_bilinear(self):
        ac = np.eye(2)
        bc = 0.5 * np.ones((2, 1))
        cc = np.array([[0.75, 1.0], [1.0, 1.0], [1.0, 0.25]])
        dc = np.array([[0.0], [0.0], [-0.33]])

        dt_requested = 0.5

        ad_truth = (5.0 / 3.0) * np.eye(2)
        bd_truth = (1.0 / 3.0) * np.ones((2, 1))
        cd_truth = np.array([[1.0, 4.0 / 3.0],
                             [4.0 / 3.0, 4.0 / 3.0],
                             [4.0 / 3.0, 1.0 / 3.0]])
        dd_truth = np.array([[0.291666666666667],
                             [1.0 / 3.0],
                             [-0.121666666666667]])

        ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
                                 method='bilinear')

        assert_array_almost_equal(ad_truth, ad)
        assert_array_almost_equal(bd_truth, bd)
        assert_array_almost_equal(cd_truth, cd)
        assert_array_almost_equal(dd_truth, dd)
        assert_almost_equal(dt_requested, dt)

        # Same continuous system again, but change sampling rate

        ad_truth = 1.4 * np.eye(2)
        bd_truth = 0.2 * np.ones((2, 1))
        cd_truth = np.array([[0.9, 1.2], [1.2, 1.2], [1.2, 0.3]])
        dd_truth = np.array([[0.175], [0.2], [-0.205]])

        dt_requested = 1.0 / 3.0

        ad, bd, cd, dd, dt = c2d((ac, bc, cc, dc), dt_requested,
                                 method='bilinear')

        assert_array_almost_equal(ad_truth, ad)
        assert_array_almost_equal(bd_truth, bd)
        assert_array_almost_equal(cd_truth, cd)
        assert_array_almost_equal(dd_truth, dd)
        assert_almost_equal(dt_requested, dt)

    def test_transferfunction(self):
        numc = np.array([0.25, 0.25, 0.5])
        denc = np.array([0.75, 0.75, 1.0])

        numd = np.array([[1.0 / 3.0, -0.427419169438754, 0.221654141101125]])
        dend = np.array([1.0, -1.351394049721225, 0.606530659712634])

        dt_requested = 0.5

        num, den, dt = c2d((numc, denc), dt_requested, method='zoh')

        assert_array_almost_equal(numd, num)
        assert_array_almost_equal(dend, den)
        assert_almost_equal(dt_requested, dt)

    def test_zerospolesgain(self):
        zeros_c = np.array([0.5, -0.5])
        poles_c = np.array([1.j / np.sqrt(2), -1.j / np.sqrt(2)])
        k_c = 1.0

        zeros_d = [1.23371727305860, 0.735356894461267]
        polls_d = [0.938148335039729 + 0.346233593780536j,
                   0.938148335039729 - 0.346233593780536j]
        k_d = 1.0

        dt_requested = 0.5

        zeros, poles, k, dt = c2d((zeros_c, poles_c, k_c), dt_requested,
                                  method='zoh')

        assert_array_almost_equal(zeros_d, zeros)
        assert_array_almost_equal(polls_d, poles)
        assert_almost_equal(k_d, k)
        assert_almost_equal(dt_requested, dt)

    def test_gbt_with_sio_tf_and_zpk(self):
        """Test method='gbt' with alpha=0.25 for tf and zpk cases."""
        # State space coefficients for the continuous SIO system.
        A = -1.0
        B = 1.0
        C = 1.0
        D = 0.5

        # The continuous transfer function coefficients.
        cnum, cden = ss2tf(A, B, C, D)

        # Continuous zpk representation
        cz, cp, ck = ss2zpk(A, B, C, D)

        h = 1.0
        alpha = 0.25

        # Explicit formulas, in the scalar case.
        Ad = (1 + (1 - alpha) * h * A) / (1 - alpha * h * A)
        Bd = h * B / (1 - alpha * h * A)
        Cd = C / (1 - alpha * h * A)
        Dd = D + alpha * C * Bd

        # Convert the explicit solution to tf
        dnum, dden = ss2tf(Ad, Bd, Cd, Dd)

        # Compute the discrete tf using cont2discrete.
        c2dnum, c2dden, dt = c2d((cnum, cden), h, method='gbt', alpha=alpha)

        assert_allclose(dnum, c2dnum)
        assert_allclose(dden, c2dden)

        # Convert explicit solution to zpk.
        dz, dp, dk = ss2zpk(Ad, Bd, Cd, Dd)

        # Compute the discrete zpk using cont2discrete.
        c2dz, c2dp, c2dk, dt = c2d((cz, cp, ck), h, method='gbt', alpha=alpha)

        assert_allclose(dz, c2dz)
        assert_allclose(dp, c2dp)
        assert_allclose(dk, c2dk)

    def test_discrete_approx(self):
        """
        Test that the solution to the discrete approximation of a continuous
        system actually approximates the solution to the continuous system.
        This is an indirect test of the correctness of the implementation
        of cont2discrete.
        """

        def u(t):
            return np.sin(2.5 * t)

        a = np.array([[-0.01]])
        b = np.array([[1.0]])
        c = np.array([[1.0]])
        d = np.array([[0.2]])
        x0 = 1.0

        t = np.linspace(0, 10.0, 101)
        dt = t[1] - t[0]
        u1 = u(t)

        # Use lsim2 to compute the solution to the continuous system.
        t, yout, xout = lsim2((a, b, c, d), T=t, U=u1, X0=x0,
                              rtol=1e-9, atol=1e-11)

        # Convert the continuous system to a discrete approximation.
        dsys = c2d((a, b, c, d), dt, method='bilinear')

        # Use dlsim with the pairwise averaged input to compute the output
        # of the discrete system.
        u2 = 0.5 * (u1[:-1] + u1[1:])
        t2 = t[:-1]
        td2, yd2, xd2 = dlsim(dsys, u=u2.reshape(-1, 1), t=t2, x0=x0)

        # ymid is the average of consecutive terms of the "exact" output
        # computed by lsim2.  This is what the discrete approximation
        # actually approximates.
        ymid = 0.5 * (yout[:-1] + yout[1:])

        assert_allclose(yd2.ravel(), ymid, rtol=1e-4)


if __name__ == "__main__":
    run_module_suite()