1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453
|
# -*- cython -*-
#
# Tempita-templated Cython file
#
"""
Fast snippets for sparse matrices.
"""
{{py:
IDX_TYPES = {
"int32": "cnp.npy_int32",
"int64": "cnp.npy_int64",
}
VALUE_TYPES = {
"bool_": "cnp.npy_bool",
"int8": "cnp.npy_int8",
"uint8": "cnp.npy_uint8",
"int16": "cnp.npy_int16",
"uint16": "cnp.npy_uint16",
"int32": "cnp.npy_int32",
"uint32": "cnp.npy_uint32",
"int64": "cnp.npy_int64",
"uint64": "cnp.npy_uint64",
"float32": "cnp.npy_float32",
"float64": "cnp.npy_float64",
"longdouble": "long double",
"complex64": "float complex",
"complex128": "double complex",
"clongdouble": "long double complex",
}
def get_dispatch(types):
for pyname, cyname in types.items():
yield pyname, cyname
def get_dispatch2(types, types2):
for pyname, cyname in types.items():
for pyname2, cyname2 in types2.items():
yield pyname, pyname2, cyname, cyname2
def define_dispatch_map(map_name, prefix, types):
result = ["cdef dict %s = {\n" % map_name]
for pyname, cyname in types.items():
a = "np.dtype(np.%s)" % (pyname,)
b = prefix + "_" + pyname
result.append('%s: %s,' % (a, b))
result.append("}\n\n")
return "\n".join(result)
def define_dispatch_map2(map_name, prefix, types, types2):
result = ["cdef dict %s = {\n" % map_name]
for pyname, cyname in types.items():
for pyname2, cyname2 in types2.items():
a = "(np.dtype(np.%s), np.dtype(np.%s))" % (pyname, pyname2)
b = prefix + "_" + pyname + "_" + pyname2
result.append('%s: %s,' % (a, b))
result.append("}\n\n")
return "\n".join(result)
}}
cimport cython
cimport cpython.list
cimport cpython.int
cimport cpython
cimport numpy as cnp
import numpy as np
def prepare_index_for_memoryview(cnp.ndarray i, cnp.ndarray j, cnp.ndarray x=None):
"""
Convert index and data arrays to form suitable for passing to the
Cython fancy getset routines.
The conversions are necessary since to (i) ensure the integer
index arrays are in one of the accepted types, and (ii) to ensure
the arrays are writable so that Cython memoryview support doesn't
choke on them.
Parameters
----------
i, j
Index arrays
x : optional
Data arrays
Returns
-------
i, j, x
Re-formatted arrays (x is omitted, if input was None)
"""
if i.dtype > j.dtype:
j = j.astype(i.dtype)
elif i.dtype < j.dtype:
i = i.astype(j.dtype)
if not i.flags.writeable or not i.dtype in (np.int32, np.int64):
i = i.astype(np.intp)
if not j.flags.writeable or not j.dtype in (np.int32, np.int64):
j = j.astype(np.intp)
if x is not None:
if not x.flags.writeable:
x = x.copy()
return i, j, x
else:
return i, j
cpdef lil_get1(cnp.npy_intp M, cnp.npy_intp N, object[:] rows, object[:] datas,
cnp.npy_intp i, cnp.npy_intp j):
"""
Get a single item from LIL matrix.
Doesn't do output type conversion. Checks for bounds errors.
Parameters
----------
M, N, rows, datas
Shape and data arrays for a LIL matrix
i, j : int
Indices at which to get
Returns
-------
x
Value at indices.
"""
cdef list row, data
if i < -M or i >= M:
raise IndexError('row index (%d) out of bounds' % (i,))
if i < 0:
i += M
if j < -N or j >= N:
raise IndexError('column index (%d) out of bounds' % (j,))
if j < 0:
j += N
row = rows[i]
data = datas[i]
pos = bisect_left(row, j)
if pos != len(data) and row[pos] == j:
return data[pos]
else:
return 0
def lil_insert(cnp.npy_intp M, cnp.npy_intp N, object[:] rows, object[:] datas,
cnp.npy_intp i, cnp.npy_intp j, object x, object dtype):
return _LIL_INSERT_DISPATCH[dtype](M, N, rows, datas, i, j, x)
{{for NAME, VALUE_T in get_dispatch(VALUE_TYPES)}}
cpdef _lil_insert_{{NAME}}(cnp.npy_intp M, cnp.npy_intp N, object[:] rows, object[:] datas,
cnp.npy_intp i, cnp.npy_intp j, {{VALUE_T}} x):
"""
Insert a single item to LIL matrix.
Checks for bounds errors and deletes item if x is zero.
Parameters
----------
M, N, rows, datas
Shape and data arrays for a LIL matrix
i, j : int
Indices at which to get
x
Value to insert.
"""
cdef list row, data
cdef int is_zero
if i < -M or i >= M:
raise IndexError('row index (%d) out of bounds' % (i,))
if i < 0:
i += M
if j < -N or j >= N:
raise IndexError('column index (%d) out of bounds' % (j,))
if j < 0:
j += N
row = rows[i]
data = datas[i]
if x == 0:
lil_deleteat_nocheck(rows[i], datas[i], j)
else:
lil_insertat_nocheck(rows[i], datas[i], j, x)
{{endfor}}
{{define_dispatch_map('_LIL_INSERT_DISPATCH', '_lil_insert', VALUE_TYPES)}}
def lil_fancy_get(cnp.npy_intp M, cnp.npy_intp N,
object[:] rows,
object[:] datas,
object[:] new_rows,
object[:] new_datas,
cnp.ndarray i_idx,
cnp.ndarray j_idx):
"""
Get multiple items at given indices in LIL matrix and store to
another LIL.
Parameters
----------
M, N, rows, data
LIL matrix data, initially empty
new_rows, new_idx
Data for LIL matrix to insert to.
Must be preallocated to shape `i_idx.shape`!
i_idx, j_idx
Indices of elements to insert to the new LIL matrix.
"""
return _LIL_FANCY_GET_DISPATCH[i_idx.dtype](M, N, rows, datas, new_rows, new_datas, i_idx, j_idx)
{{for NAME, IDX_T in get_dispatch(IDX_TYPES)}}
def _lil_fancy_get_{{NAME}}(cnp.npy_intp M, cnp.npy_intp N,
object[:] rows,
object[:] datas,
object[:] new_rows,
object[:] new_datas,
{{IDX_T}}[:,:] i_idx,
{{IDX_T}}[:,:] j_idx):
cdef cnp.npy_intp x, y
cdef cnp.npy_intp i, j
cdef object value
cdef list new_row
cdef list new_data
for x in range(i_idx.shape[0]):
new_row = []
new_data = []
for y in range(i_idx.shape[1]):
i = i_idx[x,y]
j = j_idx[x,y]
value = lil_get1(M, N, rows, datas, i, j)
if value is not 0:
# Object identity as shortcut
new_row.append(y)
new_data.append(value)
new_rows[x] = new_row
new_datas[x] = new_data
{{endfor}}
{{define_dispatch_map('_LIL_FANCY_GET_DISPATCH', '_lil_fancy_get', IDX_TYPES)}}
def lil_fancy_set(cnp.npy_intp M, cnp.npy_intp N,
object[:] rows,
object[:] data,
cnp.ndarray i_idx,
cnp.ndarray j_idx,
cnp.ndarray values):
"""
Set multiple items to a LIL matrix.
Checks for zero elements and deletes them.
Parameters
----------
M, N, rows, data
LIL matrix data
i_idx, j_idx
Indices of elements to insert to the new LIL matrix.
values
Values of items to set.
"""
if values.dtype == np.bool_:
# Cython doesn't support np.bool_ as a memoryview type
return _lil_fancy_set_generic(M, N, rows, data, i_idx, j_idx, values)
else:
return _LIL_FANCY_SET_DISPATCH[i_idx.dtype, values.dtype](M, N, rows, data, i_idx, j_idx, values)
{{for PYIDX, PYVALUE, IDX_T, VALUE_T in get_dispatch2(IDX_TYPES, VALUE_TYPES)}}
cpdef _lil_fancy_set_{{PYIDX}}_{{PYVALUE}}(cnp.npy_intp M, cnp.npy_intp N,
object[:] rows,
object[:] data,
{{IDX_T}}[:,:] i_idx,
{{IDX_T}}[:,:] j_idx,
{{VALUE_T}}[:,:] values):
cdef cnp.npy_intp x, y
cdef cnp.npy_intp i, j
for x in range(i_idx.shape[0]):
for y in range(i_idx.shape[1]):
i = i_idx[x,y]
j = j_idx[x,y]
_lil_insert_{{PYVALUE}}(M, N, rows, data, i, j, values[x, y])
{{endfor}}
{{define_dispatch_map2('_LIL_FANCY_SET_DISPATCH', '_lil_fancy_set', IDX_TYPES, VALUE_TYPES)}}
cpdef _lil_fancy_set_generic(cnp.npy_intp M, cnp.npy_intp N,
object[:] rows,
object[:] data,
cnp.ndarray i_idx,
cnp.ndarray j_idx,
cnp.ndarray values):
cdef cnp.npy_intp x, y
cdef cnp.npy_intp i, j
for x in range(i_idx.shape[0]):
for y in range(i_idx.shape[1]):
i = i_idx[x,y]
j = j_idx[x,y]
_lil_insert_{{PYVALUE}}(M, N, rows, data, i, j, values[x, y])
cdef lil_insertat_nocheck(list row, list data, cnp.npy_intp j, object x):
"""
Insert a single item to LIL matrix.
Doesn't check for bounds errors. Doesn't check for zero x.
Parameters
----------
M, N, rows, datas
Shape and data arrays for a LIL matrix
i, j : int
Indices at which to get
x
Value to insert.
"""
cdef cnp.npy_intp pos
pos = bisect_left(row, j)
if pos == len(row):
row.append(j)
data.append(x)
elif row[pos] != j:
row.insert(pos, j)
data.insert(pos, x)
else:
data[pos] = x
cdef lil_deleteat_nocheck(list row, list data, cnp.npy_intp j):
"""
Delete a single item from a row in LIL matrix.
Doesn't check for bounds errors.
Parameters
----------
row, data
Row data for LIL matrix.
j : int
Column index to delete at
"""
cdef cnp.npy_intp pos
pos = bisect_left(row, j)
if pos < len(row) and row[pos] == j:
del row[pos]
del data[pos]
@cython.cdivision(True)
@cython.boundscheck(False)
@cython.wraparound(False)
cdef bisect_left(list a, cnp.npy_intp x):
"""
Bisection search in a sorted list.
List is assumed to contain objects castable to integers.
Parameters
----------
a
List to search in
x
Value to search for
Returns
-------
j : int
Index at value (if present), or at the point to which
it can be inserted maintaining order.
"""
cdef cnp.npy_intp hi = len(a)
cdef cnp.npy_intp lo = 0
cdef cnp.npy_intp mid, v
while lo < hi:
mid = (lo + hi)//2
v = a[mid]
if v < x:
lo = mid + 1
else:
hi = mid
return lo
def _fill_dtype_map(map, chars):
"""
Fill in Numpy dtype chars for problematic types, working around
Numpy < 1.6 bugs.
"""
for c in chars:
if c in "SUVO":
continue
dt = np.dtype(c)
if dt not in map:
for k, v in map.items():
if k.kind == dt.kind and k.itemsize == dt.itemsize:
map[dt] = v
break
def _fill_dtype_map2(map):
"""
Fill in Numpy dtype chars for problematic types, working around
Numpy < 1.6 bugs.
"""
for c1 in np.typecodes['Integer']:
for c2 in np.typecodes['All']:
if c2 in "SUVO":
continue
dt1 = np.dtype(c1)
dt2 = np.dtype(c2)
if (dt1, dt2) not in map:
for k, v in map.items():
if (k[0].kind == dt1.kind and k[0].itemsize == dt1.itemsize and
k[1].kind == dt2.kind and k[1].itemsize == dt2.itemsize):
map[(dt1, dt2)] = v
break
_fill_dtype_map(_LIL_INSERT_DISPATCH, np.typecodes['All'])
_fill_dtype_map(_LIL_FANCY_GET_DISPATCH, np.typecodes['Integer'])
_fill_dtype_map2(_LIL_FANCY_SET_DISPATCH)
|