File: _csparsetools.pyx.in

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (453 lines) | stat: -rw-r--r-- 12,112 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
# -*- cython -*-
#
# Tempita-templated Cython file
#
"""
Fast snippets for sparse matrices.
"""

{{py:

IDX_TYPES = {
    "int32": "cnp.npy_int32",
    "int64": "cnp.npy_int64",
}

VALUE_TYPES = {
    "bool_": "cnp.npy_bool",
    "int8": "cnp.npy_int8",
    "uint8": "cnp.npy_uint8",
    "int16": "cnp.npy_int16",
    "uint16": "cnp.npy_uint16",
    "int32": "cnp.npy_int32",
    "uint32": "cnp.npy_uint32",
    "int64": "cnp.npy_int64",
    "uint64": "cnp.npy_uint64",
    "float32": "cnp.npy_float32",
    "float64": "cnp.npy_float64",
    "longdouble": "long double",
    "complex64": "float complex",
    "complex128": "double complex",
    "clongdouble": "long double complex",
}

def get_dispatch(types):
    for pyname, cyname in types.items():
        yield pyname, cyname

def get_dispatch2(types, types2):
    for pyname, cyname in types.items():
        for pyname2, cyname2 in types2.items():
            yield pyname, pyname2, cyname, cyname2

def define_dispatch_map(map_name, prefix, types):
    result = ["cdef dict %s = {\n" % map_name]
    for pyname, cyname in types.items():
        a = "np.dtype(np.%s)" % (pyname,)
        b = prefix + "_" + pyname
        result.append('%s: %s,' % (a, b))
    result.append("}\n\n")
    return "\n".join(result)

def define_dispatch_map2(map_name, prefix, types, types2):
    result = ["cdef dict %s = {\n" % map_name]
    for pyname, cyname in types.items():
        for pyname2, cyname2 in types2.items():
            a = "(np.dtype(np.%s), np.dtype(np.%s))" % (pyname, pyname2)
            b = prefix + "_" + pyname + "_" + pyname2
            result.append('%s: %s,' % (a, b))
    result.append("}\n\n")
    return "\n".join(result)
}}

cimport cython
cimport cpython.list
cimport cpython.int
cimport cpython
cimport numpy as cnp
import numpy as np


def prepare_index_for_memoryview(cnp.ndarray i, cnp.ndarray j, cnp.ndarray x=None):
    """
    Convert index and data arrays to form suitable for passing to the
    Cython fancy getset routines.

    The conversions are necessary since to (i) ensure the integer
    index arrays are in one of the accepted types, and (ii) to ensure
    the arrays are writable so that Cython memoryview support doesn't
    choke on them.

    Parameters
    ----------
    i, j
        Index arrays
    x : optional
        Data arrays

    Returns
    -------
    i, j, x
        Re-formatted arrays (x is omitted, if input was None)

    """
    if i.dtype > j.dtype:
        j = j.astype(i.dtype)
    elif i.dtype < j.dtype:
        i = i.astype(j.dtype)

    if not i.flags.writeable or not i.dtype in (np.int32, np.int64):
        i = i.astype(np.intp)
    if not j.flags.writeable or not j.dtype in (np.int32, np.int64):
        j = j.astype(np.intp)

    if x is not None:
        if not x.flags.writeable:
            x = x.copy()
        return i, j, x
    else:
        return i, j


cpdef lil_get1(cnp.npy_intp M, cnp.npy_intp N, object[:] rows, object[:] datas,
               cnp.npy_intp i, cnp.npy_intp j):
    """
    Get a single item from LIL matrix.

    Doesn't do output type conversion. Checks for bounds errors.

    Parameters
    ----------
    M, N, rows, datas
        Shape and data arrays for a LIL matrix
    i, j : int
        Indices at which to get

    Returns
    -------
    x
        Value at indices.

    """
    cdef list row, data

    if i < -M or i >= M:
        raise IndexError('row index (%d) out of bounds' % (i,))
    if i < 0:
        i += M

    if j < -N or j >= N:
        raise IndexError('column index (%d) out of bounds' % (j,))
    if j < 0:
        j += N

    row = rows[i]
    data = datas[i]
    pos = bisect_left(row, j)

    if pos != len(data) and row[pos] == j:
        return data[pos]
    else:
        return 0


def lil_insert(cnp.npy_intp M, cnp.npy_intp N, object[:] rows, object[:] datas,
               cnp.npy_intp i, cnp.npy_intp j, object x, object dtype):
    return _LIL_INSERT_DISPATCH[dtype](M, N, rows, datas, i, j, x)


{{for NAME, VALUE_T in get_dispatch(VALUE_TYPES)}}
cpdef _lil_insert_{{NAME}}(cnp.npy_intp M, cnp.npy_intp N, object[:] rows, object[:] datas,
                           cnp.npy_intp i, cnp.npy_intp j, {{VALUE_T}} x):
    """
    Insert a single item to LIL matrix.

    Checks for bounds errors and deletes item if x is zero.

    Parameters
    ----------
    M, N, rows, datas
        Shape and data arrays for a LIL matrix
    i, j : int
        Indices at which to get
    x
        Value to insert.

    """
    cdef list row, data
    cdef int is_zero

    if i < -M or i >= M:
        raise IndexError('row index (%d) out of bounds' % (i,))
    if i < 0:
        i += M

    if j < -N or j >= N:
        raise IndexError('column index (%d) out of bounds' % (j,))
    if j < 0:
        j += N

    row = rows[i]
    data = datas[i]

    if x == 0:
        lil_deleteat_nocheck(rows[i], datas[i], j)
    else:
        lil_insertat_nocheck(rows[i], datas[i], j, x)
{{endfor}}


{{define_dispatch_map('_LIL_INSERT_DISPATCH', '_lil_insert', VALUE_TYPES)}}


def lil_fancy_get(cnp.npy_intp M, cnp.npy_intp N,
                  object[:] rows,
                  object[:] datas,
                  object[:] new_rows,
                  object[:] new_datas,
                  cnp.ndarray i_idx,
                  cnp.ndarray j_idx):
    """
    Get multiple items at given indices in LIL matrix and store to
    another LIL.

    Parameters
    ----------
    M, N, rows, data
        LIL matrix data, initially empty
    new_rows, new_idx
        Data for LIL matrix to insert to.
        Must be preallocated to shape `i_idx.shape`!
    i_idx, j_idx
        Indices of elements to insert to the new LIL matrix.

    """
    return _LIL_FANCY_GET_DISPATCH[i_idx.dtype](M, N, rows, datas, new_rows, new_datas, i_idx, j_idx)


{{for NAME, IDX_T in get_dispatch(IDX_TYPES)}}
def _lil_fancy_get_{{NAME}}(cnp.npy_intp M, cnp.npy_intp N,
                            object[:] rows,
                            object[:] datas,
                            object[:] new_rows,
                            object[:] new_datas,
                            {{IDX_T}}[:,:] i_idx,
                            {{IDX_T}}[:,:] j_idx):
    cdef cnp.npy_intp x, y
    cdef cnp.npy_intp i, j
    cdef object value
    cdef list new_row
    cdef list new_data

    for x in range(i_idx.shape[0]):
        new_row = []
        new_data = []

        for y in range(i_idx.shape[1]):
            i = i_idx[x,y]
            j = j_idx[x,y]

            value = lil_get1(M, N, rows, datas, i, j)

            if value is not 0:
                # Object identity as shortcut
                new_row.append(y)
                new_data.append(value)

        new_rows[x] = new_row
        new_datas[x] = new_data
{{endfor}}


{{define_dispatch_map('_LIL_FANCY_GET_DISPATCH', '_lil_fancy_get', IDX_TYPES)}}


def lil_fancy_set(cnp.npy_intp M, cnp.npy_intp N,
                  object[:] rows,
                  object[:] data,
                  cnp.ndarray i_idx,
                  cnp.ndarray j_idx,
                  cnp.ndarray values):
    """
    Set multiple items to a LIL matrix.

    Checks for zero elements and deletes them.

    Parameters
    ----------
    M, N, rows, data
        LIL matrix data
    i_idx, j_idx
        Indices of elements to insert to the new LIL matrix.
    values
        Values of items to set.

    """
    if values.dtype == np.bool_:
        # Cython doesn't support np.bool_ as a memoryview type
        return _lil_fancy_set_generic(M, N, rows, data, i_idx, j_idx, values)
    else:
        return _LIL_FANCY_SET_DISPATCH[i_idx.dtype, values.dtype](M, N, rows, data, i_idx, j_idx, values)


{{for PYIDX, PYVALUE, IDX_T, VALUE_T in get_dispatch2(IDX_TYPES, VALUE_TYPES)}}
cpdef _lil_fancy_set_{{PYIDX}}_{{PYVALUE}}(cnp.npy_intp M, cnp.npy_intp N,
                                           object[:] rows,
                                           object[:] data,
                                           {{IDX_T}}[:,:] i_idx,
                                           {{IDX_T}}[:,:] j_idx,
                                           {{VALUE_T}}[:,:] values):
    cdef cnp.npy_intp x, y
    cdef cnp.npy_intp i, j

    for x in range(i_idx.shape[0]):
        for y in range(i_idx.shape[1]):
            i = i_idx[x,y]
            j = j_idx[x,y]
            _lil_insert_{{PYVALUE}}(M, N, rows, data, i, j, values[x, y])
{{endfor}}


{{define_dispatch_map2('_LIL_FANCY_SET_DISPATCH', '_lil_fancy_set', IDX_TYPES, VALUE_TYPES)}}


cpdef _lil_fancy_set_generic(cnp.npy_intp M, cnp.npy_intp N,
                             object[:] rows,
                             object[:] data,
                             cnp.ndarray i_idx,
                             cnp.ndarray j_idx,
                             cnp.ndarray values):
    cdef cnp.npy_intp x, y
    cdef cnp.npy_intp i, j

    for x in range(i_idx.shape[0]):
        for y in range(i_idx.shape[1]):
            i = i_idx[x,y]
            j = j_idx[x,y]
            _lil_insert_{{PYVALUE}}(M, N, rows, data, i, j, values[x, y])


cdef lil_insertat_nocheck(list row, list data, cnp.npy_intp j, object x):
    """
    Insert a single item to LIL matrix.

    Doesn't check for bounds errors. Doesn't check for zero x.

    Parameters
    ----------
    M, N, rows, datas
        Shape and data arrays for a LIL matrix
    i, j : int
        Indices at which to get
    x
        Value to insert.

    """
    cdef cnp.npy_intp pos

    pos = bisect_left(row, j)
    if pos == len(row):
        row.append(j)
        data.append(x)
    elif row[pos] != j:
        row.insert(pos, j)
        data.insert(pos, x)
    else:
        data[pos] = x


cdef lil_deleteat_nocheck(list row, list data, cnp.npy_intp j):
    """
    Delete a single item from a row in LIL matrix.

    Doesn't check for bounds errors.

    Parameters
    ----------
    row, data
        Row data for LIL matrix.
    j : int
        Column index to delete at

    """
    cdef cnp.npy_intp pos
    pos = bisect_left(row, j)
    if pos < len(row) and row[pos] == j:
        del row[pos]
        del data[pos]


@cython.cdivision(True)
@cython.boundscheck(False)
@cython.wraparound(False)
cdef bisect_left(list a, cnp.npy_intp x):
    """
    Bisection search in a sorted list.

    List is assumed to contain objects castable to integers.

    Parameters
    ----------
    a
        List to search in
    x
        Value to search for

    Returns
    -------
    j : int
        Index at value (if present), or at the point to which
        it can be inserted maintaining order.

    """
    cdef cnp.npy_intp hi = len(a)
    cdef cnp.npy_intp lo = 0
    cdef cnp.npy_intp mid, v

    while lo < hi:
        mid = (lo + hi)//2
        v = a[mid]
        if v < x:
            lo = mid + 1
        else:
            hi = mid
    return lo


def _fill_dtype_map(map, chars):
    """
    Fill in Numpy dtype chars for problematic types, working around
    Numpy < 1.6 bugs.
    """
    for c in chars:
        if c in "SUVO":
            continue
        dt = np.dtype(c)
        if dt not in map:
            for k, v in map.items():
                if k.kind == dt.kind and k.itemsize == dt.itemsize:
                    map[dt] = v
                    break


def _fill_dtype_map2(map):
    """
    Fill in Numpy dtype chars for problematic types, working around
    Numpy < 1.6 bugs.
    """
    for c1 in np.typecodes['Integer']:
        for c2 in np.typecodes['All']:
            if c2 in "SUVO":
                continue
            dt1 = np.dtype(c1)
            dt2 = np.dtype(c2)
            if (dt1, dt2) not in map:
                for k, v in map.items():
                    if (k[0].kind == dt1.kind and k[0].itemsize == dt1.itemsize and
                        k[1].kind == dt2.kind and k[1].itemsize == dt2.itemsize):
                        map[(dt1, dt2)] = v
                        break

_fill_dtype_map(_LIL_INSERT_DISPATCH, np.typecodes['All'])
_fill_dtype_map(_LIL_FANCY_GET_DISPATCH, np.typecodes['Integer'])
_fill_dtype_map2(_LIL_FANCY_SET_DISPATCH)