File: _laplacian.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (137 lines) | stat: -rw-r--r-- 4,487 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
"""
Laplacian of a compressed-sparse graph
"""

# Authors: Aric Hagberg <hagberg@lanl.gov>
#          Gael Varoquaux <gael.varoquaux@normalesup.org>
#          Jake Vanderplas <vanderplas@astro.washington.edu>
# License: BSD

from __future__ import division, print_function, absolute_import

import numpy as np
from scipy.sparse import isspmatrix, coo_matrix


###############################################################################
# Graph laplacian
def laplacian(csgraph, normed=False, return_diag=False):
    """ Return the Laplacian matrix of a directed graph.

    For non-symmetric graphs the out-degree is used in the computation.

    Parameters
    ----------
    csgraph : array_like or sparse matrix, 2 dimensions
        compressed-sparse graph, with shape (N, N).
    normed : bool, optional
        If True, then compute normalized Laplacian.
    return_diag : bool, optional
        If True, then return diagonal as well as laplacian.

    Returns
    -------
    lap : ndarray
        The N x N laplacian matrix of graph.
    diag : ndarray
        The length-N diagonal of the laplacian matrix.
        diag is returned only if return_diag is True.

    Notes
    -----
    The Laplacian matrix of a graph is sometimes referred to as the
    "Kirchoff matrix" or the "admittance matrix", and is useful in many
    parts of spectral graph theory.  In particular, the eigen-decomposition
    of the laplacian matrix can give insight into many properties of the graph.

    For non-symmetric directed graphs, the laplacian is computed using the
    out-degree of each node.

    Examples
    --------
    >>> from scipy.sparse import csgraph
    >>> G = np.arange(5) * np.arange(5)[:, np.newaxis]
    >>> G
    array([[ 0,  0,  0,  0,  0],
           [ 0,  1,  2,  3,  4],
           [ 0,  2,  4,  6,  8],
           [ 0,  3,  6,  9, 12],
           [ 0,  4,  8, 12, 16]])
    >>> csgraph.laplacian(G, normed=False)
    array([[  0,   0,   0,   0,   0],
           [  0,   9,  -2,  -3,  -4],
           [  0,  -2,  16,  -6,  -8],
           [  0,  -3,  -6,  21, -12],
           [  0,  -4,  -8, -12,  24]])
    """
    if csgraph.ndim != 2 or csgraph.shape[0] != csgraph.shape[1]:
        raise ValueError('csgraph must be a square matrix or array')

    if normed and (np.issubdtype(csgraph.dtype, np.int)
                   or np.issubdtype(csgraph.dtype, np.uint)):
        csgraph = csgraph.astype(np.float)

    if isspmatrix(csgraph):
        return _laplacian_sparse(csgraph, normed=normed,
                                 return_diag=return_diag)
    else:
        return _laplacian_dense(csgraph, normed=normed,
                                return_diag=return_diag)


def _laplacian_sparse(graph, normed=False, return_diag=False):
    n_nodes = graph.shape[0]
    if not graph.format == 'coo':
        lap = (-graph).tocoo()
    else:
        lap = -graph.copy()
    diag_mask = (lap.row == lap.col)
    if not diag_mask.sum() == n_nodes:
        # The sparsity pattern of the matrix has holes on the diagonal,
        # we need to fix that
        diag_idx = lap.row[diag_mask]
        diagonal_holes = list(set(range(n_nodes)).difference(
                                diag_idx))
        new_data = np.concatenate([lap.data, np.ones(len(diagonal_holes))])
        new_row = np.concatenate([lap.row, diagonal_holes])
        new_col = np.concatenate([lap.col, diagonal_holes])
        lap = coo_matrix((new_data, (new_row, new_col)), shape=lap.shape)
        diag_mask = (lap.row == lap.col)

    lap.data[diag_mask] = 0
    w = -np.asarray(lap.sum(axis=1)).squeeze()
    if normed:
        w = np.sqrt(w)
        w_zeros = (w == 0)
        w[w_zeros] = 1
        lap.data /= w[lap.row]
        lap.data /= w[lap.col]
        lap.data[diag_mask] = (1 - w_zeros[lap.row[diag_mask]]).astype(lap.data.dtype)
    else:
        lap.data[diag_mask] = w[lap.row[diag_mask]]

    if return_diag:
        return lap, w
    return lap


def _laplacian_dense(graph, normed=False, return_diag=False):
    n_nodes = graph.shape[0]
    lap = -np.asarray(graph)  # minus sign leads to a copy

    # set diagonal to zero
    lap.flat[::n_nodes + 1] = 0
    w = -lap.sum(axis=0)
    if normed:
        w = np.sqrt(w)
        w_zeros = (w == 0)
        w[w_zeros] = 1
        lap /= w
        lap /= w[:, np.newaxis]
        lap.flat[::n_nodes + 1] = 1 - w_zeros
    else:
        lap.flat[::n_nodes + 1] = w

    if return_diag:
        return lap, w
    return lap