File: dlacon.c

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (236 lines) | stat: -rw-r--r-- 5,630 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

/*! @file dlacon.c
 * \brief Estimates the 1-norm
 *
 * <pre>
 * -- SuperLU routine (version 2.0) --
 * Univ. of California Berkeley, Xerox Palo Alto Research Center,
 * and Lawrence Berkeley National Lab.
 * November 15, 1997
 * </pre>
 */
#include <math.h>
#include "slu_Cnames.h"

/*! \brief
 *
 * <pre>
 *   Purpose   
 *   =======   
 *
 *   DLACON estimates the 1-norm of a square matrix A.   
 *   Reverse communication is used for evaluating matrix-vector products. 
 * 
 *
 *   Arguments   
 *   =========   
 *
 *   N      (input) INT
 *          The order of the matrix.  N >= 1.   
 *
 *   V      (workspace) DOUBLE PRECISION array, dimension (N)   
 *          On the final return, V = A*W,  where  EST = norm(V)/norm(W)   
 *          (W is not returned).   
 *
 *   X      (input/output) DOUBLE PRECISION array, dimension (N)   
 *          On an intermediate return, X should be overwritten by   
 *                A * X,   if KASE=1,   
 *                A' * X,  if KASE=2,
 *         and DLACON must be re-called with all the other parameters   
 *          unchanged.   
 *
 *   ISGN   (workspace) INT array, dimension (N)
 *
 *   EST    (output) DOUBLE PRECISION   
 *          An estimate (a lower bound) for norm(A).   
 *
 *   KASE   (input/output) INT
 *          On the initial call to DLACON, KASE should be 0.   
 *          On an intermediate return, KASE will be 1 or 2, indicating   
 *          whether X should be overwritten by A * X  or A' * X.   
 *          On the final return from DLACON, KASE will again be 0.   
 *
 *   Further Details   
 *   ======= =======   
 *
 *   Contributed by Nick Higham, University of Manchester.   
 *   Originally named CONEST, dated March 16, 1988.   
 *
 *   Reference: N.J. Higham, "FORTRAN codes for estimating the one-norm of 
 *   a real or complex matrix, with applications to condition estimation", 
 *   ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.   
 *   ===================================================================== 
 * </pre>
 */

int
dlacon_(int *n, double *v, double *x, int *isgn, double *est, int *kase)

{


    /* Table of constant values */
    int c__1 = 1;
    double      zero = 0.0;
    double      one = 1.0;
    
    /* Local variables */
    static int iter;
    static int jump, jlast;
    static double altsgn, estold;
    static int i, j;
    double temp;
#ifdef _CRAY
    extern int ISAMAX(int *, double *, int *);
    extern double SASUM(int *, double *, int *);
    extern int SCOPY(int *, double *, int *, double *, int *);
#else
    extern int idamax_(int *, double *, int *);
    extern double dasum_(int *, double *, int *);
    extern int dcopy_(int *, double *, int *, double *, int *);
#endif
#define d_sign(a, b) (b >= 0 ? fabs(a) : -fabs(a))    /* Copy sign */
#define i_dnnt(a) \
	( a>=0 ? floor(a+.5) : -floor(.5-a) ) /* Round to nearest integer */

    if ( *kase == 0 ) {
	for (i = 0; i < *n; ++i) {
	    x[i] = 1. / (double) (*n);
	}
	*kase = 1;
	jump = 1;
	return 0;
    }

    switch (jump) {
	case 1:  goto L20;
	case 2:  goto L40;
	case 3:  goto L70;
	case 4:  goto L110;
	case 5:  goto L140;
    }

    /*     ................ ENTRY   (JUMP = 1)   
	   FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY A*X. */
  L20:
    if (*n == 1) {
	v[0] = x[0];
	*est = fabs(v[0]);
	/*        ... QUIT */
	goto L150;
    }
#ifdef _CRAY
    *est = SASUM(n, x, &c__1);
#else
    *est = dasum_(n, x, &c__1);
#endif

    for (i = 0; i < *n; ++i) {
	x[i] = d_sign(one, x[i]);
	isgn[i] = i_dnnt(x[i]);
    }
    *kase = 2;
    jump = 2;
    return 0;

    /*     ................ ENTRY   (JUMP = 2)   
	   FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X. */
L40:
#ifdef _CRAY
    j = ISAMAX(n, &x[0], &c__1);
#else
    j = idamax_(n, &x[0], &c__1);
#endif
    --j;
    iter = 2;

    /*     MAIN LOOP - ITERATIONS 2,3,...,ITMAX. */
L50:
    for (i = 0; i < *n; ++i) x[i] = zero;
    x[j] = one;
    *kase = 1;
    jump = 3;
    return 0;

    /*     ................ ENTRY   (JUMP = 3)   
	   X HAS BEEN OVERWRITTEN BY A*X. */
L70:
#ifdef _CRAY
    SCOPY(n, x, &c__1, v, &c__1);
#else
    dcopy_(n, x, &c__1, v, &c__1);
#endif
    estold = *est;
#ifdef _CRAY
    *est = SASUM(n, v, &c__1);
#else
    *est = dasum_(n, v, &c__1);
#endif

    for (i = 0; i < *n; ++i)
	if (i_dnnt(d_sign(one, x[i])) != isgn[i])
	    goto L90;

    /*     REPEATED SIGN VECTOR DETECTED, HENCE ALGORITHM HAS CONVERGED. */
    goto L120;

L90:
    /*     TEST FOR CYCLING. */
    if (*est <= estold) goto L120;

    for (i = 0; i < *n; ++i) {
	x[i] = d_sign(one, x[i]);
	isgn[i] = i_dnnt(x[i]);
    }
    *kase = 2;
    jump = 4;
    return 0;

    /*     ................ ENTRY   (JUMP = 4)   
	   X HAS BEEN OVERWRITTEN BY TRANDPOSE(A)*X. */
L110:
    jlast = j;
#ifdef _CRAY
    j = ISAMAX(n, &x[0], &c__1);
#else
    j = idamax_(n, &x[0], &c__1);
#endif
    --j;
    if (x[jlast] != fabs(x[j]) && iter < 5) {
	++iter;
	goto L50;
    }

    /*     ITERATION COMPLETE.  FINAL STAGE. */
L120:
    altsgn = 1.;
    for (i = 1; i <= *n; ++i) {
	x[i-1] = altsgn * ((double)(i - 1) / (double)(*n - 1) + 1.);
	altsgn = -altsgn;
    }
    *kase = 1;
    jump = 5;
    return 0;
    
    /*     ................ ENTRY   (JUMP = 5)   
	   X HAS BEEN OVERWRITTEN BY A*X. */
L140:
#ifdef _CRAY
    temp = SASUM(n, x, &c__1) / (double)(*n * 3) * 2.;
#else
    temp = dasum_(n, x, &c__1) / (double)(*n * 3) * 2.;
#endif
    if (temp > *est) {
#ifdef _CRAY
	SCOPY(n, &x[0], &c__1, &v[0], &c__1);
#else
	dcopy_(n, &x[0], &c__1, &v[0], &c__1);
#endif
	*est = temp;
    }

L150:
    *kase = 0;
    return 0;

} /* dlacon_ */