File: _plotutils.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (167 lines) | stat: -rw-r--r-- 4,033 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from __future__ import division, print_function, absolute_import

import numpy as np
from scipy.lib.decorator import decorator as _decorator

__all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d']


@_decorator
def _held_figure(func, obj, ax=None, **kw):
    import matplotlib.pyplot as plt

    if ax is None:
        fig = plt.figure()
        ax = fig.gca()

    was_held = ax.ishold()
    try:
        ax.hold(True)
        return func(obj, ax=ax, **kw)
    finally:
        ax.hold(was_held)


def _adjust_bounds(ax, points):
    ptp_bound = points.ptp(axis=0)
    ax.set_xlim(points[:,0].min() - 0.1*ptp_bound[0],
                points[:,0].max() + 0.1*ptp_bound[0])
    ax.set_ylim(points[:,1].min() - 0.1*ptp_bound[1],
                points[:,1].max() + 0.1*ptp_bound[1])


@_held_figure
def delaunay_plot_2d(tri, ax=None):
    """
    Plot the given Delaunay triangulation in 2-D

    Parameters
    ----------
    tri : scipy.spatial.Delaunay instance
        Triangulation to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    Delaunay
    matplotlib.pyplot.triplot

    Notes
    -----
    Requires Matplotlib.

    """
    if tri.points.shape[1] != 2:
        raise ValueError("Delaunay triangulation is not 2-D")

    ax.plot(tri.points[:,0], tri.points[:,1], 'o')
    ax.triplot(tri.points[:,0], tri.points[:,1], tri.simplices.copy())

    _adjust_bounds(ax, tri.points)

    return ax.figure


@_held_figure
def convex_hull_plot_2d(hull, ax=None):
    """
    Plot the given convex hull diagram in 2-D

    Parameters
    ----------
    hull : scipy.spatial.ConvexHull instance
        Convex hull to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    ConvexHull

    Notes
    -----
    Requires Matplotlib.

    """
    if hull.points.shape[1] != 2:
        raise ValueError("Convex hull is not 2-D")

    ax.plot(hull.points[:,0], hull.points[:,1], 'o')
    for simplex in hull.simplices:
        ax.plot(hull.points[simplex,0], hull.points[simplex,1], 'k-')

    _adjust_bounds(ax, hull.points)

    return ax.figure


@_held_figure
def voronoi_plot_2d(vor, ax=None):
    """
    Plot the given Voronoi diagram in 2-D

    Parameters
    ----------
    vor : scipy.spatial.Voronoi instance
        Diagram to plot
    ax : matplotlib.axes.Axes instance, optional
        Axes to plot on

    Returns
    -------
    fig : matplotlib.figure.Figure instance
        Figure for the plot

    See Also
    --------
    Voronoi

    Notes
    -----
    Requires Matplotlib.

    """
    if vor.points.shape[1] != 2:
        raise ValueError("Voronoi diagram is not 2-D")

    ax.plot(vor.points[:,0], vor.points[:,1], '.')
    ax.plot(vor.vertices[:,0], vor.vertices[:,1], 'o')

    for simplex in vor.ridge_vertices:
        simplex = np.asarray(simplex)
        if np.all(simplex >= 0):
            ax.plot(vor.vertices[simplex,0], vor.vertices[simplex,1], 'k-')

    ptp_bound = vor.points.ptp(axis=0)

    center = vor.points.mean(axis=0)
    for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
        simplex = np.asarray(simplex)
        if np.any(simplex < 0):
            i = simplex[simplex >= 0][0]  # finite end Voronoi vertex

            t = vor.points[pointidx[1]] - vor.points[pointidx[0]]  # tangent
            t /= np.linalg.norm(t)
            n = np.array([-t[1], t[0]])  # normal

            midpoint = vor.points[pointidx].mean(axis=0)
            direction = np.sign(np.dot(midpoint - center, n)) * n
            far_point = vor.vertices[i] + direction * ptp_bound.max()

            ax.plot([vor.vertices[i,0], far_point[0]],
                    [vor.vertices[i,1], far_point[1]], 'k--')

    _adjust_bounds(ax, vor.points)

    return ax.figure