File: bench_ckdtree.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (186 lines) | stat: -rw-r--r-- 7,929 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import division, print_function, absolute_import

import sys
from numpy.testing import *
from scipy.spatial import cKDTree, KDTree
import numpy as np


class TestBuild(TestCase):

    def bench_build(self):
        print()
        print('        Constructing kd-tree')
        print('=====================================')
        print(' dim | # points |  KDTree  | cKDTree ')

        for (m, n, repeat) in [(3,10000,3), (8,10000,3), (16,10000,3)]:
            print('%4s | %7s ' % (m, n), end=' ')
            sys.stdout.flush()

            data = np.concatenate((np.random.randn(n//2,m),
                                   np.random.randn(n-n//2,m)+np.ones(m)))

            print('| %6.3fs ' % (measure('T1 = KDTree(data)', repeat) / repeat), end=' ')
            sys.stdout.flush()
            print('| %6.3fs' % (measure('T2 = cKDTree(data)', repeat) / repeat), end=' ')
            sys.stdout.flush()
            print('')


class TestQuery(TestCase):

    def bench_query(self):
        print()
        print('                       Querying kd-tree')
        print('===============================================================')
        print(' dim | # points | # queries |  KDTree  | cKDTree | flat cKDTree')

        for (m, n, r, repeat) in [(3,10000,1000,3),
                                  (8,10000,1000,3),
                                  (16,10000,1000,3)]:
            print('%4s | %8s | %8s ' % (m, n, r), end=' ')
            sys.stdout.flush()

            data = np.concatenate((np.random.randn(n//2,m),
                                   np.random.randn(n-n//2,m)+np.ones(m)))
            queries = np.concatenate((np.random.randn(r//2,m),
                                      np.random.randn(r-r//2,m)+np.ones(m)))

            T1 = KDTree(data)
            T2 = cKDTree(data)
            T3 = cKDTree(data,leafsize=n)
            print('| %6.3fs ' % (measure('T1.query(queries)', 1) / 1), end=' ')
            sys.stdout.flush()
            print('| %6.3fs' % (measure('T2.query(queries)', repeat) / repeat), end=' ')
            sys.stdout.flush()
            print('| %6.3fs' % (measure('T3.query(queries)', repeat) / repeat), end=' ')
            sys.stdout.flush()
            print('')


class TestQueryBallPoint(TestCase):
    def bench_query_ball_point(self):
        print()
        print('                   Query ball point kd-tree')
        print('===============================================================')
        print(' dim | # points | # queries | probe radius |  KDTree  | cKDTree | flat cKDTree')

        for (m, n, r, repeat) in [(3,10000,1000,3)]:  # ,
#                                  (8,10000,1000,3),
#                                  (16,10000,1000,3)]:
            for probe_radius in (0.2, 0.5):
                print('%4s | %8s | %9s | %11.1f ' % (m, n, r, probe_radius), end=' ')
                sys.stdout.flush()

                data = np.concatenate((np.random.randn(n//2,m),
                                       np.random.randn(n-n//2,m)+np.ones(m)))
                queries = np.concatenate((np.random.randn(r//2,m),
                                          np.random.randn(r-r//2,m)+np.ones(m)))

                T1 = KDTree(data)
                T2 = cKDTree(data)
                T3 = cKDTree(data,leafsize=n)
                print('| %6.3fs ' % (measure('T1.query_ball_point(queries, probe_radius)', 1) / 1), end=' ')
                sys.stdout.flush()
                print('| %6.3fs' % (measure('T2.query_ball_point(queries, probe_radius)', repeat) / repeat), end=' ')
                sys.stdout.flush()
                print('| %6.3fs' % (measure('T3.query_ball_point(queries, probe_radius)', repeat) / repeat), end=' ')
                sys.stdout.flush()
                print('')


class TestQueryPairs(TestCase):
    def bench_query_pairs(self):
        print()
        print('                     Query pairs kd-tree')
        print('==================================================================')
        print(' dim | # points | probe radius |  KDTree  | cKDTree | flat cKDTree')

        for (m, n, repeat) in [(3,1000,30),
                               (8,1000,30),
                               (16,1000,30)]:
            for probe_radius in (0.2, 0.5):
                print('%4s | %8s | %11.1f ' % (m, n, probe_radius), end=' ')
                sys.stdout.flush()

                data = np.concatenate((np.random.randn(n//2,m),
                                       np.random.randn(n-n//2,m)+np.ones(m)))

                T1 = KDTree(data)
                T2 = cKDTree(data)
                T3 = cKDTree(data,leafsize=n)
                print('| %6.3fs ' % (measure('T1.query_pairs(probe_radius)', 1) / 1), end=' ')
                sys.stdout.flush()
                print('| %6.3fs' % (measure('T2.query_pairs(probe_radius)', repeat) / repeat), end=' ')
                sys.stdout.flush()
                print('| %6.3fs' % (measure('T3.query_pairs(probe_radius)', repeat) / repeat), end=' ')
                sys.stdout.flush()
                print('')


class TestSparseDistanceMatrix(TestCase):
    def bench_sparse_distance_matrix(self):
        print()
        print('                   Sparse distance matrix kd-tree')
        print('====================================================================')
        print(' dim | # points T1 | # points T2 | probe radius |  KDTree  | cKDTree')

        for (m, n1, n2, repeat) in [(3,1000,1000,30),
                                    (8,1000,1000,30),
                                    (16,1000,1000,30)]:

            data1 = np.concatenate((np.random.randn(n1//2,m),
                                    np.random.randn(n1-n1//2,m)+np.ones(m)))
            data2 = np.concatenate((np.random.randn(n2//2,m),
                                    np.random.randn(n2-n2//2,m)+np.ones(m)))

            T1 = KDTree(data1)
            T2 = KDTree(data2)
            cT1 = cKDTree(data1)
            cT2 = cKDTree(data2)

            for probe_radius in (0.2, 0.5):
                print('%4s | %11s | %11s | %11.1f ' % (m, n1, n2, probe_radius), end=' ')
                sys.stdout.flush()

                print('| %6.3fs ' % (measure('T1.sparse_distance_matrix(T2, probe_radius)', 1) / 1), end=' ')
                sys.stdout.flush()
                print('| %6.3fs ' % (measure('cT1.sparse_distance_matrix(cT2, probe_radius)', repeat) / repeat), end=' ')
                sys.stdout.flush()
                print('')


class TestCountNeighbors(TestCase):
    def bench_count_neighbors(self):
        print()
        print('                     Count neighbors kd-tree')
        print('====================================================================')
        print(' dim | # points T1 | # points T2 | probe radius |  KDTree  | cKDTree')

        for (m, n1, n2, repeat) in [(3,1000,1000,30),
                                    (8,1000,1000,30),
                                    (16,1000,1000,30)]:

            data1 = np.concatenate((np.random.randn(n1//2,m),
                                    np.random.randn(n1-n1//2,m)+np.ones(m)))
            data2 = np.concatenate((np.random.randn(n2//2,m),
                                    np.random.randn(n2-n2//2,m)+np.ones(m)))

            T1 = KDTree(data1)
            T2 = KDTree(data2)
            cT1 = cKDTree(data1)
            cT2 = cKDTree(data2)

            for probe_radius in (0.2, 0.5):
                print('%4s | %11s | %11s | %11.1f ' % (m, n1, n2, probe_radius), end=' ')
                sys.stdout.flush()

                print('| %6.3fs ' % (measure('T1.count_neighbors(T2, probe_radius)', 1) / 1), end=' ')
                sys.stdout.flush()
                print('| %6.3fs ' % (measure('cT1.count_neighbors(cT2, probe_radius)', repeat) / repeat), end=' ')
                sys.stdout.flush()
                print('')

if __name__ == "__main__":
    run_module_suite()