File: qhull.pyx

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (2403 lines) | stat: -rw-r--r-- 78,910 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
"""
Wrappers for Qhull triangulation, plus some additional N-D geometry utilities

.. versionadded:: 0.9

"""
#
# Copyright (C)  Pauli Virtanen, 2010.
#
# Distributed under the same BSD license as Scipy.
#

import threading
import numpy as np
cimport numpy as np
cimport cython
cimport qhull
cimport setlist

from numpy.compat import asbytes

__all__ = ['Delaunay', 'ConvexHull', 'Voronoi', 'tsearch']

#------------------------------------------------------------------------------
# Qhull interface
#------------------------------------------------------------------------------

cdef extern from "stdio.h":
    extern void *stdin
    extern void *stderr
    extern void *stdout

cdef extern from "math.h":
    double fabs(double x) nogil
    double sqrt(double x) nogil

cdef extern from "setjmp.h" nogil:
    ctypedef struct jmp_buf:
        pass
    int setjmp(jmp_buf STATE) nogil
    void longjmp(jmp_buf STATE, int VALUE) nogil

# Define the clockwise constant
cdef extern from "qhull/src/user.h":
    cdef enum:
        qh_ORIENTclock

cdef extern from "qhull/src/qset.h":
    ctypedef union setelemT:
        void *p
        int i

    ctypedef struct setT:
        int maxsize
        setelemT e[1]

    int qh_setsize(setT *set) nogil
    void qh_setappend(setT **setp, void *elem) nogil

cdef extern from "qhull/src/libqhull.h":
    ctypedef double realT
    ctypedef double coordT
    ctypedef double pointT
    ctypedef int boolT
    ctypedef unsigned int flagT

    ctypedef struct facetT:
        coordT offset
        coordT *center
        coordT *normal
        facetT *next
        facetT *previous
        unsigned id
        setT *vertices
        setT *neighbors
        setT *ridges
        setT *coplanarset
        flagT simplicial
        flagT flipped
        flagT upperdelaunay
        flagT toporient
        unsigned visitid

    ctypedef struct vertexT:
        vertexT *next
        vertexT *previous
        unsigned int id, visitid
        pointT *point
        setT *neighbors

    ctypedef struct ridgeT:
        setT *vertices
        facetT *top
        facetT *bottom

    ctypedef struct qhT:
        boolT DELAUNAY
        boolT SCALElast
        boolT KEEPcoplanar
        boolT MERGEexact
        boolT NOerrexit
        boolT PROJECTdelaunay
        boolT ATinfinity
        boolT UPPERdelaunay
        boolT hasTriangulation
        int normal_size
        char *qhull_command
        facetT *facet_list
        facetT *facet_tail
        vertexT *vertex_list
        vertexT *vertex_tail
        int num_facets
        int num_points
        int center_size
        unsigned int facet_id
        pointT *first_point
        pointT *input_points
        realT last_low
        realT last_high
        realT last_newhigh
        realT max_outside
        realT MINoutside
        realT DISTround
        jmp_buf errexit
        setT *other_points
        unsigned int visit_id
        unsigned int vertex_visit

    extern qhT *qh_qh
    extern int qh_PRINToff
    extern int qh_ALL

    void qh_init_A(void *inp, void *out, void *err, int argc, char **argv) nogil
    void qh_init_B(realT *points, int numpoints, int dim, boolT ismalloc) nogil
    void qh_checkflags(char *, char *) nogil
    void qh_initflags(char *) nogil
    void qh_option(char *, char*, char* ) nogil
    void qh_freeqhull(boolT) nogil
    void qh_memfreeshort(int *curlong, int *totlong) nogil
    void qh_qhull() nogil
    void qh_check_output() nogil
    void qh_produce_output() nogil
    void qh_triangulate() nogil
    void qh_checkpolygon() nogil
    void qh_findgood_all() nogil
    void qh_appendprint(int format) nogil
    setT *qh_pointvertex() nogil
    realT *qh_readpoints(int* num, int *dim, boolT* ismalloc) nogil
    int qh_new_qhull(int dim, int numpoints, realT *points,
                     boolT ismalloc, char* qhull_cmd, void *outfile,
                     void *errfile) nogil
    int qh_pointid(pointT *point) nogil
    vertexT *qh_nearvertex(facetT *facet, pointT *point, double *dist) nogil
    boolT qh_addpoint(pointT *furthest, facetT *facet, boolT checkdist) nogil
    facetT *qh_findbestfacet(pointT *point, boolT bestoutside,
                             realT *bestdist, boolT *isoutside) nogil
    void qh_setdelaunay(int dim, int count, pointT *points) nogil
    void qh_restore_qhull(qhT **oldqh) nogil
    qhT *qh_save_qhull() nogil

cdef extern from "qhull/src/io.h":
    ctypedef enum qh_RIDGE:
        qh_RIDGEall
        qh_RIDGEinner
        qh_RIDGEouter

    ctypedef void printvridgeT(void *fp, vertexT *vertex, vertexT *vertexA,
                               setT *centers, boolT unbounded)
    int qh_eachvoronoi_all(void *fp, void* printvridge,
                           boolT isUpper, qh_RIDGE innerouter,
                           boolT inorder) nogil

    void qh_order_vertexneighbors(vertexT *vertex) nogil
    int qh_compare_facetvisit(void *p1, void *p2) nogil

cdef extern from "qhull/src/geom.h":
    pointT *qh_facetcenter(setT *vertices) nogil

cdef extern from "qhull/src/poly.h":
    void qh_check_maxout() nogil

cdef extern from "qhull/src/mem.h":
    void qh_memfree(void *object, int insize)

from libc.string cimport memcpy
from libc.stdlib cimport qsort

#------------------------------------------------------------------------------
# LAPACK interface
#------------------------------------------------------------------------------

cdef extern from "qhull_blas.h":
    void qh_dgetrf(int *m, int *n, double *a, int *lda, int *ipiv,
                   int *info) nogil
    void qh_dgetrs(char *trans, int *n, int *nrhs, double *a, int *lda,
                   int *ipiv, double *b, int *ldb, int *info) nogil
    void qh_dgecon(char *norm, int *n, double *a, int *lda, double *anorm,
                   double *rcond, double *work, int *iwork, int *info) nogil


#------------------------------------------------------------------------------
# Qhull wrapper
#------------------------------------------------------------------------------

# Qhull is not threadsafe: needs locking
_qhull_lock = threading.Lock()

# Qhull has (swappable) global state: keep track which Qhull instance is active
# and how many instances are alive
cdef _Qhull _active_qhull = None
cdef int _qhull_count = 0

# Qhull objects pending cleanup
#
# Python's garbage collector can trigger a call to a destructor while
# the qhull lock is held.  Destructors, for instance that of
# Voronoi/etc, can call _Qhull methods that require the lock, which
# causes a deadlock also in a single-threaded code.
#
# We ensure that _Qhull.close is safe to call from a destructor, by
# postponing the cleanup if the lock happens to be held. The other
# methods are not safe to call.
#
cdef list _qhull_pending_cleanup = []

class QhullError(RuntimeError):
    pass

@cython.final
cdef class _Qhull:
    cdef qhT *_saved_qh
    cdef list _point_arrays
    cdef public bytes options
    cdef public bytes mode_option
    cdef public object furthest_site

    cdef readonly int ndim
    cdef int numpoints, _is_delaunay
    cdef np.ndarray _ridge_points

    cdef list _ridge_vertices
    cdef object _ridge_error
    cdef int _nridges

    cdef np.ndarray _ridge_equations

    @cython.final
    def __init__(self,
                 bytes mode_option,
                 np.ndarray[np.double_t, ndim=2] points,
                 bytes options=None,
                 bytes required_options=None,
                 furthest_site=False,
                 incremental=False):
        global _active_qhull, _qhull_count
        cdef int exitcode

        points = np.ascontiguousarray(points, dtype=np.double)

        self.numpoints = points.shape[0]
        self.ndim = points.shape[1]

        if self.numpoints <= 0:
            raise ValueError("No points given")
        if self.ndim < 2:
            raise ValueError("Need at least 2-D data")

        # Process options
        option_set = set()
        if options is not None:
            option_set.update(options.split())
        if furthest_site:
            if b"Qz" in option_set:
                option_set.remove(b"Qz")
            option_set.add(b"Qu")
        if required_options is not None:
            required_option_set = set(required_options.split())
            if b"QJ" in option_set and b"Qt" in required_option_set:
                # safe to remove, QJ always produces simplical output
                required_option_set.remove(b"Qt")
            option_set.update(required_option_set)

        if incremental:
            incremental_bad_ops = set([b'Qbb', b'Qbk', b'QBk', b'QbB', b'Qz'])
            bad_opts = []
            for bad_opt in incremental_bad_ops:
                if bad_opt in options:
                    bad_opts.append(bad_opt)
            if bad_opts:
                raise ValueError("Qhull options %r are incompatible "
                                 "with incremental mode" % (bad_opts,))

            if b"Qt" in option_set:
                # Qhull wants this
                option_set.add(b"Q11")

            # We need to own the copy of the points in incremental mode
            points = points.copy()

        if mode_option in (b"d", b"v"):
            self._is_delaunay = 1
        else:
            self._is_delaunay = 0

        self._point_arrays = [points]
        self.options = b" ".join(option_set)
        self.mode_option = mode_option
        self.furthest_site = furthest_site

        options = b"qhull "  + mode_option +  b" " + self.options

        _qhull_lock.acquire()
        try:
            if _active_qhull is not None:
                _active_qhull._deactivate()

            _active_qhull = self
            _qhull_count += 1

            options_c = <char*>options
            with nogil:
                exitcode = qh_new_qhull(self.ndim, self.numpoints,
                                        <realT*>points.data, 0,
                                        options_c, NULL, stderr)

            if exitcode != 0:
                self._uninit()
                raise QhullError("Qhull error")
        finally:
            _qhull_lock.release()

    @cython.final
    def close(self):
        if _qhull_lock.acquire(False):
            try:
                self._cleanup_pending()
                self._uninit()
            finally:
                _qhull_lock.release()
        else:
            # Failed to acquire the lock. 
            _qhull_pending_cleanup.append(self)

    @cython.final
    cdef int _cleanup_pending(self) except -1:
        """
        Process any pending cleanups (_qhull_lock MUST be held when calling this)
        """
        cdef _Qhull qh
        cdef int k

        for k in range(len(_qhull_pending_cleanup)):
            try:
                qh = _qhull_pending_cleanup.pop()
            except IndexError:
                break
            qh._uninit()

        return 0

    @cython.final
    cdef int _activate(self) except -1:
        """
        Activate this instance (_qhull_lock MUST be held when calling this)
        """
        global _active_qhull

        if _active_qhull is self:
            return 0
        elif _active_qhull is not None:
            _active_qhull._deactivate()

        assert _active_qhull is None

        if self._saved_qh == NULL:
            raise RuntimeError("Qhull instance is closed")

        qh_restore_qhull(&self._saved_qh)
        self._saved_qh = NULL
        _active_qhull = self

        return 0

    @cython.final
    cdef int _deactivate(self) except -1:
        """
        Deactivate this instance (_qhull_lock MUST be held when calling this)
        """
        global _active_qhull

        assert _active_qhull is self
        assert self._saved_qh == NULL

        self._saved_qh = qh_save_qhull()
        _active_qhull = None

    @cython.final
    cdef int _uninit(self) except -1:
        """
        Uninitialize this instance (_qhull_lock MUST be held when calling this)
        """
        global _active_qhull, _qhull_count
        cdef int curlong, totlong

        if not (_active_qhull is self or self._saved_qh != NULL):
            # already freed
            return 0

        self._activate()

        qh_freeqhull(qh_ALL)

        _qhull_count -= 1
        _active_qhull = None
        self._saved_qh = NULL

        if _qhull_count == 0:
            # last one out cleans the house
            qh_memfreeshort(&curlong, &totlong)
            if curlong != 0 or totlong != 0:
                raise QhullError(
                    "qhull: did not free %d bytes (%d pieces)" %
                    (totlong, curlong))

        return 0

    @cython.final
    def get_points(self):
        if len(self._point_arrays) == 1:
            return self._point_arrays[0]
        else:
            return np.concatenate(
                [x[:,:self.ndim] for x in self._point_arrays],
                axis=0)

    @cython.final
    def add_points(self, points):
        cdef int j
        cdef realT *p
        cdef facetT *facet
        cdef double bestdist
        cdef boolT isoutside
        cdef np.ndarray arr

        points = np.asarray(points)
        if points.ndim!=2 or points.shape[1] != self._point_arrays[0].shape[1]:
            raise ValueError("invalid size for new points array")
        if points.size == 0:
            return

        if self._is_delaunay:
            arr = np.empty((points.shape[0], self.ndim+1), dtype=np.double)
            arr[:,:-1] = points
        else:
            arr = np.array(points, dtype=np.double, order="C", copy=True)

        _qhull_lock.acquire()
        try:
            self._activate()

            # nonlocal error handling
            exitcode = setjmp(qh_qh.errexit)
            if exitcode != 0:
                raise QhullError("Qhull error")
            qh_qh.NOerrexit = 0

            # add points to triangulation
            if self._is_delaunay:
                # lift to paraboloid
                qh_setdelaunay(arr.shape[1], arr.shape[0], <realT*>arr.data)

            p = <realT*>arr.data

            for j in xrange(arr.shape[0]):
                facet = qh_findbestfacet(p, 0, &bestdist, &isoutside)
                if isoutside:
                    if not qh_addpoint(p, facet, 0):
                        break
                else:
                    # append the point to the "other points" list, to
                    # maintain the point IDs
                    qh_setappend(&qh_qh.other_points, p)

                p += arr.shape[1]

            qh_check_maxout()
            qh_qh.hasTriangulation = 0

            self._point_arrays.append(arr)
        finally:
            qh_qh.NOerrexit = 1
            _qhull_lock.release()

    @cython.final
    def get_paraboloid_shift_scale(self):
        cdef double paraboloid_scale
        cdef double paraboloid_shift

        _qhull_lock.acquire()
        try:
            self._activate()

            if qh_qh.SCALElast:
                paraboloid_scale = qh_qh.last_newhigh / (
                    qh_qh.last_high - qh_qh.last_low)
                paraboloid_shift = - qh_qh.last_low * paraboloid_scale
            else:
                paraboloid_scale = 1.0
                paraboloid_shift = 0.0
        finally:
            _qhull_lock.release()

        return paraboloid_scale, paraboloid_shift

    @cython.final
    def triangulate(self):
        _qhull_lock.acquire()
        try:
            self._activate()

            with nogil:
                qh_triangulate() # get rid of non-simplical facets
        finally:
            _qhull_lock.release()

    @cython.final
    def get_simplex_facet_array(self):
        _qhull_lock.acquire()
        try:
            self._activate()
            return self._get_simplex_facet_array()
        finally:
            _qhull_lock.release()

    @cython.final
    @cython.boundscheck(False)
    @cython.cdivision(True)
    cdef _get_simplex_facet_array(self):
        """
        Return array of simplical facets currently in Qhull.

        Returns
        -------
        facets : array of int, shape (nfacets, ndim+1)
            Indices of coordinates of vertices forming the simplical facets
        neighbors : array of int, shape (nfacets, ndim)
            Indices of neighboring facets.  The kth neighbor is opposite
            the kth vertex, and the first neighbor is the horizon facet
            for the first vertex.

            Facets extending to infinity are denoted with index -1.
        equations : array of double, shape (nfacets, ndim+2)

        """
        cdef facetT* facet
        cdef facetT* neighbor
        cdef vertexT *vertex
        cdef pointT *point
        cdef int i, j, ipoint, ipoint2, ncoplanar
        cdef object tmp
        cdef np.ndarray[np.npy_int, ndim=2] facets
        cdef np.ndarray[np.npy_int, ndim=2] neighbors
        cdef np.ndarray[np.npy_int, ndim=2] coplanar
        cdef np.ndarray[np.double_t, ndim=2] equations
        cdef np.ndarray[np.npy_int, ndim=1] id_map
        cdef double dist
        cdef int facet_ndim
        cdef int numpoints
        cdef unsigned int lower_bound
        cdef unsigned int swapped_index

        facet_ndim = self.ndim
        numpoints = self.numpoints

        if self._is_delaunay:
            facet_ndim += 1

        id_map = np.empty((qh_qh.facet_id,), dtype=np.intc)
        id_map.fill(-1)

        # Compute facet indices
        with nogil:
            facet = qh_qh.facet_list
            j = 0
            while facet and facet.next:
                if not self._is_delaunay or facet.upperdelaunay == qh_qh.UPPERdelaunay:
                    if not facet.simplicial and ( \
                           qh_setsize(facet.vertices) != facet_ndim or \
                           qh_setsize(facet.neighbors) != facet_ndim):
                        with gil:
                            raise QhullError(
                                "non-simplical facet encountered: %r vertices"
                                % (qh_setsize(facet.vertices),))

                    id_map[facet.id] = j
                    j += 1

                facet = facet.next

        # Allocate output
        facets = np.zeros((j, facet_ndim), dtype=np.intc)
        neighbors = np.zeros((j, facet_ndim), dtype=np.intc)
        equations = np.zeros((j, facet_ndim+1), dtype=np.double)

        ncoplanar = 0
        coplanar = np.zeros((10, 3), dtype=np.intc)

        # Retrieve facet information
        with nogil:
            facet = qh_qh.facet_list
            j = 0
            while facet and facet.next:
                if self._is_delaunay and facet.upperdelaunay != qh_qh.UPPERdelaunay:
                    facet = facet.next
                    continue

                # Use a lower bound so that the tight loop in high dimensions
                # is not affected by the conditional below
                lower_bound = 0
                if (self._is_delaunay and
                    facet.toporient == qh_ORIENTclock and facet_ndim == 3):
                    # Swap the first and second indices to maintain a
                    # counter-clockwise orientation.
                    for i in xrange(2):
                        # Save the vertex info
                        swapped_index = 1 ^ i
                        vertex = <vertexT*>facet.vertices.e[i].p
                        ipoint = qh_pointid(vertex.point)
                        facets[j, swapped_index] = ipoint

                        # Save the neighbor info
                        neighbor = <facetT*>facet.neighbors.e[i].p
                        neighbors[j, swapped_index] = id_map[neighbor.id]

                    lower_bound = 2

                for i in xrange(lower_bound, facet_ndim):
                    # Save the vertex info
                    vertex = <vertexT*>facet.vertices.e[i].p
                    ipoint = qh_pointid(vertex.point)
                    facets[j, i] = ipoint

                    # Save the neighbor info
                    neighbor = <facetT*>facet.neighbors.e[i].p
                    neighbors[j, i] = id_map[neighbor.id]

                # Save simplex equation info
                for i in xrange(facet_ndim):
                    equations[j, i] = facet.normal[i]
                equations[j, facet_ndim] = facet.offset

                # Save coplanar info
                if facet.coplanarset:
                    for i in range(qh_setsize(facet.coplanarset)):
                        point = <pointT*>facet.coplanarset.e[i].p
                        vertex = qh_nearvertex(facet, point, &dist)

                        if ncoplanar >= coplanar.shape[0]:
                            with gil:
                                tmp = coplanar
                                coplanar = None
                                try:
                                    tmp.resize(2 * ncoplanar + 1, 3)
                                except ValueError:
                                    # Work around Cython issue on Python 2.4
                                    tmp = np.resize(tmp, (2*ncoplanar+1, 3))
                                coplanar = tmp

                        coplanar[ncoplanar, 0] = qh_pointid(point)
                        coplanar[ncoplanar, 1] = id_map[facet.id]
                        coplanar[ncoplanar, 2] = qh_pointid(vertex.point)
                        ncoplanar += 1

                j += 1
                facet = facet.next

        return facets, neighbors, equations, coplanar[:ncoplanar]

    @cython.final
    def get_voronoi_diagram(_Qhull self):
        _qhull_lock.acquire()
        try:
            self._activate()
            return self._get_voronoi_diagram()
        finally:
            _qhull_lock.release()

    @cython.final
    @cython.boundscheck(False)
    @cython.cdivision(True)
    cdef _get_voronoi_diagram(_Qhull self):
        """
        Return the voronoi diagram currently in Qhull.

        Returns
        -------
        voronoi_vertices : array of double, shape (nvoronoi_vertices, ndim)
            Coordinates of the Voronoi vertices

        ridge_points : array of double, shape (nridges, 2)
            Voronoi ridges, as indices to the points array.

        ridge_vertices : list of lists, shape (nridges, *)
            Voronoi vertices for each Voronoi ridge, as indices to
            the Voronoi vertices array.
            Infinity is indicated by index ``-1``.

        regions : list of lists, shape (nregion, *)
            Voronoi vertices of all regions.

        point_region : array of int, shape (npoint,)
            Index of the Voronoi region for each input point.

        """
        cdef int i, j, k
        cdef vertexT *vertex
        cdef facetT *neighbor
        cdef facetT *facet

        cdef object tmp
        cdef np.ndarray[np.double_t, ndim=2] voronoi_vertices
        cdef np.ndarray[np.intp_t, ndim=1] point_region
        cdef int nvoronoi_vertices
        cdef pointT infty_point[NPY_MAXDIMS+1]
        cdef pointT *point
        cdef pointT *center
        cdef double dist
        cdef int inf_seen

        cdef list regions
        cdef list cur_region

        # -- Grab Voronoi ridges
        self._nridges = 0
        self._ridge_error = None
        self._ridge_points = np.empty((10, 2), np.intc)
        self._ridge_vertices = []

        qh_eachvoronoi_all(<void*>self, &_visit_voronoi, qh_qh.UPPERdelaunay,
                           qh_RIDGEall, 1)

        self._ridge_points = self._ridge_points[:self._nridges]

        if self._ridge_error is not None:
            raise self._ridge_error

        # Now, qh_eachvoronoi_all has initialized the visitids of facets
        # to correspond do the Voronoi vertex indices.

        # -- Grab Voronoi regions
        regions = []

        point_region = np.empty((self.numpoints,), np.intp)
        point_region.fill(-1)

        vertex = qh_qh.vertex_list
        while vertex and vertex.next:
            qh_order_vertexneighbors_nd(self.ndim+1, vertex)

            i = qh_pointid(vertex.point)
            if i < self.numpoints:
                # Qz results to one extra point
                point_region[i] = len(regions)

            inf_seen = 0
            cur_region = []
            for k in xrange(qh_setsize(vertex.neighbors)):
                neighbor = <facetT*>vertex.neighbors.e[k].p
                i = neighbor.visitid - 1
                if i == -1:
                    if not inf_seen:
                        inf_seen = 1
                    else:
                        continue
                cur_region.append(int(i))
            if len(cur_region) == 1 and cur_region[0] == -1:
                # report similarly as qvoronoi o
                cur_region = []
            regions.append(cur_region)

            vertex = vertex.next

        # -- Grab Voronoi vertices and point-to-region map
        nvoronoi_vertices = 0
        voronoi_vertices = np.empty((10, self.ndim), np.double)

        facet = qh_qh.facet_list
        while facet and facet.next:
            if facet.visitid > 0:
                # finite Voronoi vertex

                center = qh_facetcenter(facet.vertices)

                nvoronoi_vertices = max(facet.visitid, nvoronoi_vertices)
                if nvoronoi_vertices >= voronoi_vertices.shape[0]:
                    tmp = voronoi_vertices
                    voronoi_vertices = None
                    try:
                        tmp.resize(2*nvoronoi_vertices + 1, self.ndim)
                    except ValueError:
                        tmp = np.resize(tmp, (2*nvoronoi_vertices+1, self.ndim))
                    voronoi_vertices = tmp

                for k in range(self.ndim):
                    voronoi_vertices[facet.visitid-1, k] = center[k]

                qh_memfree(center, qh_qh.center_size)

                if facet.coplanarset:
                    for k in range(qh_setsize(facet.coplanarset)):
                        point = <pointT*>facet.coplanarset.e[k].p
                        vertex = qh_nearvertex(facet, point, &dist)

                        i = qh_pointid(point)
                        j = qh_pointid(vertex.point)

                        if i < self.numpoints:
                            # Qz can result to one extra point
                            point_region[i] = point_region[j]

            facet = facet.next

        voronoi_vertices = voronoi_vertices[:nvoronoi_vertices]

        return voronoi_vertices, self._ridge_points, self._ridge_vertices, \
               regions, point_region

    @cython.final
    def get_extremes_2d(_Qhull self):
        if self._is_delaunay:
            raise ValueError("Cannot compute for Delaunay")

        _qhull_lock.acquire()
        try:
            self._activate()
            return self._get_extremes_2d()
        finally:
            _qhull_lock.release()

    @cython.final
    @cython.boundscheck(False)
    @cython.cdivision(True)
    cdef _get_extremes_2d(_Qhull self):
        """
        Compute the extremal points in a 2-D convex hull, i.e. the
        vertices of the convex hull, ordered counterclockwise.

        See qhull/io.c:qh_printextremes_2d

        """
        cdef facetT *facet
        cdef facetT *startfacet
        cdef facetT *nextfacet
        cdef vertexT *vertexA
        cdef vertexT *vertexB
        cdef int[:] extremes
        cdef int nextremes

        nextremes = 0
        extremes_arr = np.zeros(100, dtype=np.intc)
        extremes = extremes_arr

        qh_qh.visit_id += 1
        qh_qh.vertex_visit += 1

        facet = qh_qh.facet_list
        startfacet = facet
        while facet:
            if facet.visitid == qh_qh.visit_id:
                raise QhullError("Qhull internal error: loop in facet list")

            if facet.toporient:
                vertexA = <vertexT*>facet.vertices.e[0].p
                vertexB = <vertexT*>facet.vertices.e[1].p
                nextfacet = <facetT*>facet.neighbors.e[0].p
            else:
                vertexB = <vertexT*>facet.vertices.e[0].p
                vertexA = <vertexT*>facet.vertices.e[1].p
                nextfacet = <facetT*>facet.neighbors.e[1].p

            if nextremes + 2 >= extremes.shape[0]:
                extremes = None
                extremes_arr.resize(2*extremes_arr.shape[0]+1)
                extremes = extremes_arr

            if vertexA.visitid != qh_qh.vertex_visit:
                vertexA.visitid = qh_qh.vertex_visit
                extremes[nextremes] = qh_pointid(vertexA.point)
                nextremes += 1

            if vertexB.visitid != qh_qh.vertex_visit:
                vertexB.visitid = qh_qh.vertex_visit
                extremes[nextremes] = qh_pointid(vertexB.point)
                nextremes += 1

            facet.visitid = qh_qh.visit_id
            facet = nextfacet

            if facet == startfacet:
                break

        extremes = None
        extremes_arr.resize(nextremes)
        return extremes_arr


cdef void _visit_voronoi(void *ptr, vertexT *vertex, vertexT *vertexA,
                         setT *centers, boolT unbounded):
    cdef _Qhull qh = <_Qhull>ptr
    cdef int point_1, point_2, ix
    cdef list cur_vertices

    if qh._ridge_error is not None:
        return

    if qh._nridges >= qh._ridge_points.shape[0]:
        try:
            qh._ridge_points.resize(2*qh._nridges + 1, 2)
        except Exception, e:
            qh._ridge_error = e
            return

    # Record which points the ridge is between
    point_1 = qh_pointid(vertex.point)
    point_2 = qh_pointid(vertexA.point)

    p = <int*>qh._ridge_points.data
    p[2*qh._nridges + 0] = point_1
    p[2*qh._nridges + 1] = point_2

    # Record which voronoi vertices constitute the ridge
    cur_vertices = []
    for i in xrange(qh_setsize(centers)):
        ix = (<facetT*>centers.e[i].p).visitid - 1
        cur_vertices.append(ix)
    qh._ridge_vertices.append(cur_vertices)

    qh._nridges += 1

    return

cdef void qh_order_vertexneighbors_nd(int nd, vertexT *vertex):
    if nd == 3:
        qh_order_vertexneighbors(vertex)
    elif nd >= 4:
        qsort(<facetT**>&vertex.neighbors.e[0].p, qh_setsize(vertex.neighbors),
              sizeof(facetT*), qh_compare_facetvisit)


#------------------------------------------------------------------------------
# Barycentric coordinates
#------------------------------------------------------------------------------

@cython.boundscheck(False)
@cython.cdivision(True)
def _get_barycentric_transforms(np.ndarray[np.double_t, ndim=2] points,
                                np.ndarray[np.npy_int, ndim=2] simplices,
                                double eps):
    """
    Compute barycentric affine coordinate transformations for given
    simplices.

    Returns
    -------
    Tinvs : array, shape (nsimplex, ndim+1, ndim)
        Barycentric transforms for each simplex.

        Tinvs[i,:ndim,:ndim] contains inverse of the matrix ``T``,
        and Tinvs[i,ndim,:] contains the vector ``r_n`` (see below).

    Notes
    -----
    Barycentric transform from ``x`` to ``c`` is defined by::

        T c = x - r_n

    where the ``r_1, ..., r_n`` are the vertices of the simplex.
    The matrix ``T`` is defined by the condition::

        T e_j = r_j - r_n

    where ``e_j`` is the unit axis vector, e.g, ``e_2 = [0,1,0,0,...]``
    This implies that ``T_ij = (r_j - r_n)_i``.

    For the barycentric transforms, we need to compute the inverse
    matrix ``T^-1`` and store the vectors ``r_n`` for each vertex.
    These are stacked into the `Tinvs` returned.

    """
    cdef np.ndarray[np.double_t, ndim=2] T
    cdef np.ndarray[np.double_t, ndim=3] Tinvs
    cdef int isimplex
    cdef int i, j, n, nrhs, lda, ldb, info
    cdef int ipiv[NPY_MAXDIMS+1]
    cdef int ndim, nsimplex
    cdef double centroid[NPY_MAXDIMS]
    cdef double c[NPY_MAXDIMS+1]
    cdef double *transform
    cdef double anorm, rcond
    cdef double nan, rcond_limit

    cdef double work[4*NPY_MAXDIMS]
    cdef int iwork[NPY_MAXDIMS]

    cdef double x1, x2, x3
    cdef double y1, y2, y3
    cdef double det

    nan = np.nan
    ndim = points.shape[1]
    nsimplex = simplices.shape[0]

    T = np.zeros((ndim, ndim), dtype=np.double)
    Tinvs = np.zeros((nsimplex, ndim+1, ndim), dtype=np.double)

    # Maximum inverse condition number to allow: we want at least three
    # of the digits be significant, to be safe
    rcond_limit = 1000*eps

    with nogil:
        for isimplex in xrange(nsimplex):
            for i in xrange(ndim):
                Tinvs[isimplex,ndim,i] = points[simplices[isimplex,ndim],i]
                for j in xrange(ndim):
                    T[i,j] = (points[simplices[isimplex,j],i]
                              - Tinvs[isimplex,ndim,i])
                Tinvs[isimplex,i,i] = 1

            # compute 1-norm for estimating condition number
            anorm = _matrix_norm1(ndim, <double*>T.data)

            # LU decomposition
            n = ndim
            nrhs = ndim
            lda = ndim
            ldb = ndim
            qh_dgetrf(&n, &n, <double*>T.data, &lda, ipiv, &info)

            # Check condition number
            if info == 0:
                qh_dgecon("1", &n, <double*>T.data, &lda, &anorm, &rcond,
                          work, iwork, &info)

                if rcond < rcond_limit:
                    # The transform seems singular
                    info = 1

            # Compute transform
            if info == 0:
                qh_dgetrs("N", &n, &nrhs, <double*>T.data, &lda, ipiv,
                          (<double*>Tinvs.data) + ndim*(ndim+1)*isimplex,
                          &ldb, &info)

            # Deal with degenerate simplices
            if info != 0:
                for i in range(ndim+1):
                    for j in range(ndim):
                        Tinvs[isimplex,i,j] = nan

    return Tinvs

@cython.boundscheck(False)
cdef double _matrix_norm1(int n, double *a) nogil:
    """Compute the 1-norm of a square matrix given in in Fortran order"""
    cdef double maxsum = 0, colsum
    cdef int i, j

    for j in range(n):
        colsum = 0
        for i in range(n):
            colsum += fabs(a[0])
            a += 1
        if maxsum < colsum:
            maxsum = colsum
    return maxsum

cdef int _barycentric_inside(int ndim, double *transform,
                             double *x, double *c, double eps) nogil:
    """
    Check whether point is inside a simplex, using barycentric
    coordinates.  `c` will be filled with barycentric coordinates, if
    the point happens to be inside.

    """
    cdef int i, j
    c[ndim] = 1.0
    for i in xrange(ndim):
        c[i] = 0
        for j in xrange(ndim):
            c[i] += transform[ndim*i + j] * (x[j] - transform[ndim*ndim + j])
        c[ndim] -= c[i]

        if not (-eps <= c[i] <= 1 + eps):
            return 0
    if not (-eps <= c[ndim] <= 1 + eps):
        return 0
    return 1

cdef void _barycentric_coordinate_single(int ndim, double *transform,
                                         double *x, double *c, int i) nogil:
    """
    Compute a single barycentric coordinate.

    Before the ndim+1'th coordinate can be computed, the other must have
    been computed earlier.

    """
    cdef int j

    if i == ndim:
        c[ndim] = 1.0
        for j in xrange(ndim):
            c[ndim] -= c[j]
    else:
        c[i] = 0
        for j in xrange(ndim):
            c[i] += transform[ndim*i + j] * (x[j] - transform[ndim*ndim + j])

cdef void _barycentric_coordinates(int ndim, double *transform,
                                   double *x, double *c) nogil:
    """
    Compute barycentric coordinates.

    """
    cdef int i, j
    c[ndim] = 1.0
    for i in xrange(ndim):
        c[i] = 0
        for j in xrange(ndim):
            c[i] += transform[ndim*i + j] * (x[j] - transform[ndim*ndim + j])
        c[ndim] -= c[i]


#------------------------------------------------------------------------------
# N-D geometry
#------------------------------------------------------------------------------

cdef void _lift_point(DelaunayInfo_t *d, double *x, double *z) nogil:
    cdef int i
    z[d.ndim] = 0
    for i in xrange(d.ndim):
        z[i] = x[i]
        z[d.ndim] += x[i]**2
    z[d.ndim] *= d.paraboloid_scale
    z[d.ndim] += d.paraboloid_shift

cdef double _distplane(DelaunayInfo_t *d, int isimplex, double *point) nogil:
    """
    qh_distplane
    """
    cdef double dist
    cdef int k
    dist = d.equations[isimplex*(d.ndim+2) + d.ndim+1]
    for k in xrange(d.ndim+1):
        dist += d.equations[isimplex*(d.ndim+2) + k] * point[k]
    return dist


#------------------------------------------------------------------------------
# Finding simplices
#------------------------------------------------------------------------------

cdef int _is_point_fully_outside(DelaunayInfo_t *d, double *x,
                                 double eps) nogil:
    """
    Is the point outside the bounding box of the triangulation?

    """

    cdef int i
    for i in xrange(d.ndim):
        if x[i] < d.min_bound[i] - eps or x[i] > d.max_bound[i] + eps:
            return 1
    return 0

cdef int _find_simplex_bruteforce(DelaunayInfo_t *d, double *c,
                                  double *x, double eps,
                                  double eps_broad) nogil:
    """
    Find simplex containing point `x` by going through all simplices.

    """
    cdef int inside, isimplex
    cdef int k, m, ineighbor, iself
    cdef double *transform

    if _is_point_fully_outside(d, x, eps):
        return -1

    for isimplex in xrange(d.nsimplex):
        transform = d.transform + isimplex*d.ndim*(d.ndim+1)

        if transform[0] == transform[0]:
            # transform is valid (non-nan)
            inside = _barycentric_inside(d.ndim, transform, x, c, eps)
            if inside:
                return isimplex
        else:
            # transform is invalid (nan, implying degenerate simplex)

            # we replace this inside-check by a check of the neighbors
            # with a larger epsilon

            for k in xrange(d.ndim+1):
                ineighbor = d.neighbors[(d.ndim+1)*isimplex + k]
                if ineighbor == -1:
                    continue

                transform = d.transform + ineighbor*d.ndim*(d.ndim+1)
                if transform[0] != transform[0]:
                    # another bad simplex
                    continue

                _barycentric_coordinates(d.ndim, transform, x, c)

                # Check that the point lies (almost) inside the
                # neigbor simplex
                inside = 1
                for m in xrange(d.ndim+1):
                    if d.neighbors[(d.ndim+1)*ineighbor + m] == isimplex:
                        # allow extra leeway towards isimplex
                        if not (-eps_broad <= c[m] <= 1 + eps):
                            inside = 0
                            break
                    else:
                        # normal check
                        if not (-eps <= c[m] <= 1 + eps):
                            inside = 0
                            break
                if inside:
                    return ineighbor
    return -1

cdef int _find_simplex_directed(DelaunayInfo_t *d, double *c,
                                double *x, int *start, double eps,
                                double eps_broad) nogil:
    """
    Find simplex containing point `x` via a directed walk in the tesselation.

    If the simplex is found, the array `c` is filled with the corresponding
    barycentric coordinates.

    Notes
    -----

    The idea here is the following:

    1) In a simplex, the k-th neighbour is opposite the k-th vertex.
       Call the ridge between them the k-th ridge.

    2) If the k-th barycentric coordinate of the target point is negative,
       then the k-th vertex and the target point lie on the opposite sides
       of the k-th ridge.

    3) Consequently, the k-th neighbour simplex is *closer* to the target point
       than the present simplex, if projected on the normal of the k-th ridge.

    4) In a regular tesselation, hopping to any such direction is OK.

       Also, if one of the negative-coordinate neighbors happens to be -1,
       then the target point is outside the tesselation (because the
       tesselation is convex!).

    5) If all barycentric coordinates are in [-eps, 1+eps], we have found the
       simplex containing the target point.

    6) If all barycentric coordinates are non-negative but 5) is not true,
       we are in an inconsistent situation -- this should never happen.

    This may however enter an infinite loop due to rounding errors in
    the computation of the barycentric coordinates, so the iteration
    count needs to be limited, and a fallback to brute force provided.

    """
    cdef int k, m, ndim, inside, isimplex, cycle_k
    cdef double *transform
    cdef double v

    ndim = d.ndim
    isimplex = start[0]

    if isimplex < 0 or isimplex >= d.nsimplex:
        isimplex = 0

    # The maximum iteration count: it should be large enough so that
    # the algorithm usually succeeds, but smaller than nsimplex so
    # that for the cases where the algorithm fails, the main cost
    # still comes from the brute force search.

    for cycle_k in range(1 + d.nsimplex//4):
        if isimplex == -1:
            break

        transform = d.transform + isimplex*ndim*(ndim+1)

        inside = 1
        for k in xrange(ndim+1):
            _barycentric_coordinate_single(ndim, transform, x, c, k)

            if c[k] < -eps:
                # The target point is in the direction of neighbor `k`!
                m = d.neighbors[(ndim+1)*isimplex + k]
                if m == -1:
                    # The point is outside the triangulation: bail out
                    start[0] = isimplex
                    return -1

                isimplex = m
                inside = -1
                break
            elif c[k] <= 1 + eps:
                # we're inside this simplex
                pass
            else:
                # we're outside (or the coordinate is nan; a degenerate simplex)
                inside = 0

        if inside == -1:
            # hopped to another simplex
            continue
        elif inside == 1:
            # we've found the right one!
            break
        else:
            # we've failed utterly (degenerate simplices in the way).
            # fall back to brute force
            isimplex = _find_simplex_bruteforce(d, c, x, eps, eps_broad)
            break
    else:
        # the algorithm failed to converge -- fall back to brute force
        isimplex = _find_simplex_bruteforce(d, c, x, eps, eps_broad)

    start[0] = isimplex
    return isimplex

cdef int _find_simplex(DelaunayInfo_t *d, double *c,
                       double *x, int *start, double eps,
                       double eps_broad) nogil:
    """
    Find simplex containing point `x` by walking the triangulation.

    Notes
    -----
    This algorithm is similar as used by ``qh_findbest``.  The idea
    is the following:

    1. Delaunay triangulation is a projection of the lower half of a convex
       hull, of points lifted on a paraboloid.

       Simplices in the triangulation == facets on the convex hull.

    2. If a point belongs to a given simplex in the triangulation,
       its image on the paraboloid is on the positive side of
       the corresponding facet.

    3. However, it is not necessarily the *only* such facet.

    4. Also, it is not necessarily the facet whose hyperplane distance
       to the point on the paraboloid is the largest.

    ..note::

        If I'm not mistaken, `qh_findbestfacet` finds a facet for
        which the plane distance is maximized -- so it doesn't always
        return the simplex containing the point given. For example:

        >>> p = np.array([(1 - 1e-4, 0.1)])
        >>> points = np.array([(0,0), (1, 1), (1, 0), (0.99189033, 0.37674127),
        ...                    (0.99440079, 0.45182168)], dtype=np.double)
        >>> tri = qhull.delaunay(points)
        >>> tri.simplices
        array([[4, 1, 0],
               [4, 2, 1],
               [3, 2, 0],
               [3, 4, 0],
               [3, 4, 2]])
        >>> dist = qhull.plane_distance(tri, p)
        >>> dist
        array([[-0.12231439,  0.00184863,  0.01049659, -0.04714842,
                0.00425905]])
        >>> tri.simplices[dist.argmax()]
        array([3, 2, 0]

        Now, the maximally positive-distant simplex is [3, 2, 0], although
        the simplex containing the point is [4, 2, 1].

    In this algorithm, we walk around the tesselation trying to locate
    a positive-distant facet. After finding one, we fall back to a
    directed search.

    """
    cdef int isimplex, i, j, k, inside, ineigh, neighbor_found
    cdef int ndim
    cdef double z[NPY_MAXDIMS+1]
    cdef double best_dist, dist
    cdef int changed

    if _is_point_fully_outside(d, x, eps):
        return -1
    if d.nsimplex <= 0:
        return -1

    ndim = d.ndim
    isimplex = start[0]

    if isimplex < 0 or isimplex >= d.nsimplex:
        isimplex = 0

    # Lift point to paraboloid
    _lift_point(d, x, z)

    # Walk the tesselation searching for a facet with a positive planar distance
    best_dist = _distplane(d, isimplex, z)
    changed = 1
    while changed:
        if best_dist > 0:
            break
        changed = 0
        for k in xrange(ndim+1):
            ineigh = d.neighbors[(ndim+1)*isimplex + k]
            if ineigh == -1:
                continue
            dist = _distplane(d, ineigh, z)

            # Note addition of eps -- otherwise, this code does not
            # necessarily terminate! The compiler may use extended
            # accuracy of the FPU so that (dist > best_dist), but
            # after storing to double size, dist == best_dist,
            # resulting to non-terminating loop

            if dist > best_dist + eps*(1 + fabs(best_dist)):
                # Note: this is intentional: we jump in the middle of the cycle,
                #       and continue the cycle from the next k.
                #
                #       This apparently sweeps the different directions more
                #       efficiently. We don't need full accuracy, since we do
                #       a directed search afterwards in any case.
                isimplex = ineigh
                best_dist = dist
                changed = 1

    # We should now be somewhere near the simplex containing the point,
    # locate it with a directed search
    start[0] = isimplex
    return _find_simplex_directed(d, c, x, start, eps, eps_broad)


#------------------------------------------------------------------------------
# Delaunay triangulation interface, for Python
#------------------------------------------------------------------------------

class _QhullUser(object):
    """
    Takes care of basic dealings with the Qhull objects
    """

    _qhull = None

    def __init__(self, qhull, incremental=False):
        self._qhull = None
        try:
            self._update(qhull)
            if incremental:
                # last, to deal with exceptions
                self._qhull = qhull
        finally:
            if qhull is not self._qhull:
                qhull.close()

    def close(self):
        """
        close()

        Finish incremental processing.

        Call this to free resources taken up by Qhull, when using the
        incremental mode. After calling this, adding more points is no
        longer possible.
        """
        if self._qhull is not None:
            self._qhull.close()
            self._qhull = None

    def __del__(self):
        self.close()

    def _update(self, qhull):
        self.points = qhull.get_points()
        self.ndim = self.points.shape[1]
        self.npoints = self.points.shape[0]
        self.points = self.points
        self.min_bound = self.points.min(axis=0)
        self.max_bound = self.points.max(axis=0)

    def add_points(self, points, restart=False):
        """
        add_points(points, restart=False)

        Process a set of additional new points.

        Parameters
        ----------
        points : ndarray
            New points to add. The dimensionality should match that of the
            initial points.
        restart : bool, optional
            Whether to restart processing from scratch, rather than
            adding points incrementally.

        Raises
        ------
        QhullError
            Raised when Qhull encounters an error condition, such as
            geometrical degeneracy when options to resolve are not enabled.

        See Also
        --------
        close

        Notes
        -----
        You need to specify ``incremental=True`` when constructing the
        object to be able to add points incrementally. Incremental addition
        of points is also not possible after `close` has been called.

        """
        if self._qhull is None:
            raise RuntimeError("incremental mode not enabled or already closed")

        if restart:
            points = np.concatenate([self.points, points], axis=0)
            qhull = _Qhull(self._qhull.mode_option, points,
                           options=self._qhull.options,
                           furthest_site=self._qhull.furthest_site,
                           incremental=True)
            try:
                self._update(qhull)
                self._qhull = qhull
            finally:
                if qhull is not self._qhull:
                    qhull.close()
            return

        self._qhull.add_points(points)
        self._update(self._qhull)


class Delaunay(_QhullUser):
    """
    Delaunay(points, furthest_site=False, incremental=False, qhull_options=None)

    Delaunay tesselation in N dimensions.

    .. versionadded:: 0.9

    Parameters
    ----------
    points : ndarray of floats, shape (npoints, ndim)
        Coordinates of points to triangulate
    furthest_site : bool, optional
        Whether to compute a furthest-site Delaunay triangulation.
        Default: False

        .. versionadded:: 0.12.0
    incremental : bool, optional
        Allow adding new points incrementally. This takes up some additional
        resources.
    qhull_options : str, optional
        Additional options to pass to Qhull. See Qhull manual for
        details. Option "Qt" is always enabled.
        Default:"Qbb Qc Qz Qx" for ndim > 4 and "Qbb Qc Qz" otherwise.
        Incremental mode omits "Qz".

        .. versionadded:: 0.12.0

    Attributes
    ----------
    points : ndarray of double, shape (npoints, ndim)
        Coordinates of input points.
    simplices : ndarray of ints, shape (nsimplex, ndim+1)
        Indices of the points forming the simplices in the triangulation.
        For 2-D, the points are oriented counterclockwise.
    neighbors : ndarray of ints, shape (nsimplex, ndim+1)
        Indices of neighbor simplices for each simplex.
        The kth neighbor is opposite to the kth vertex.
        For simplices at the boundary, -1 denotes no neighbor.
    equations : ndarray of double, shape (nsimplex, ndim+2)
        [normal, offset] forming the hyperplane equation of the facet
        on the paraboloid (see [Qhull]_ documentation for more).
    paraboloid_scale, paraboloid_shift : float
        Scale and shift for the extra paraboloid dimension
        (see [Qhull]_ documentation for more).
    transform : ndarray of double, shape (nsimplex, ndim+1, ndim)
        Affine transform from ``x`` to the barycentric coordinates ``c``.
        This is defined by::

            T c = x - r

        At vertex ``j``, ``c_j = 1`` and the other coordinates zero.

        For simplex ``i``, ``transform[i,:ndim,:ndim]`` contains
        inverse of the matrix ``T``, and ``transform[i,ndim,:]``
        contains the vector ``r``.

        If the simplex is degenerate or nearly degenerate, its
        barycentric transform contains NaNs.
    vertex_to_simplex : ndarray of int, shape (npoints,)
        Lookup array, from a vertex, to some simplex which it is a part of.
        If qhull option "Qc" was not specified, the list will contain -1
        for points that are not vertices of the tesselation.
    convex_hull : ndarray of int, shape (nfaces, ndim)
        Vertices of facets forming the convex hull of the point set.
        The array contains the indices of the points belonging to
        the (N-1)-dimensional facets that form the convex hull
        of the triangulation.

        .. note::

           Computing convex hulls via the Delaunay triangulation is
           inefficient and subject to increased numerical instability.
           Use `ConvexHull` instead.
    coplanar : ndarray of int, shape (ncoplanar, 3)
        Indices of coplanar points and the corresponding indices of
        the nearest facet and the nearest vertex.  Coplanar
        points are input points which were *not* included in the
        triangulation due to numerical precision issues.

        If option "Qc" is not specified, this list is not computed.

        .. versionadded:: 0.12.0
    vertices
        Same as `simplices`, but deprecated.
    vertex_neighbor_vertices : tuple of two ndarrays of int; (indices, indptr)
        Neighboring vertices of vertices. The indices of neighboring
        vertices of vertex `k` are ``indptr[indices[k]:indices[k+1]]``.

    Raises
    ------
    QhullError
        Raised when Qhull encounters an error condition, such as
        geometrical degeneracy when options to resolve are not enabled.
    ValueError
        Raised if an incompatible array is given as input.

    Notes
    -----
    The tesselation is computed using the Qhull library [Qhull]_.

    .. note::

       Unless you pass in the Qhull option "QJ", Qhull does not
       guarantee that each input point appears as a vertex in the
       Delaunay triangulation. Omitted points are listed in the
       `coplanar` attribute.

    Do not call the ``add_points`` method from a ``__del__``
    destructor.

    Examples
    --------
    Triangulation of a set of points:

    >>> points = np.array([[0, 0], [0, 1.1], [1, 0], [1, 1]])
    >>> from scipy.spatial import Delaunay
    >>> tri = Delaunay(points)

    We can plot it:

    >>> import matplotlib.pyplot as plt
    >>> plt.triplot(points[:,0], points[:,1], tri.simplices.copy())
    >>> plt.plot(points[:,0], points[:,1], 'o')
    >>> plt.show()

    Point indices and coordinates for the two triangles forming the
    triangulation:

    >>> tri.simplices
    array([[3, 2, 0],
           [3, 1, 0]], dtype=int32)
    >>> points[tri.simplices]
    array([[[ 1. ,  1. ],
            [ 1. ,  0. ],
            [ 0. ,  0. ]],
           [[ 1. ,  1. ],
            [ 0. ,  1.1],
            [ 0. ,  0. ]]])

    Triangle 0 is the only neighbor of triangle 1, and it's opposite to
    vertex 1 of triangle 1:

    >>> tri.neighbors[1]
    array([-1,  0, -1], dtype=int32)
    >>> points[tri.simplices[1,1]]
    array([ 0. ,  1.1])

    We can find out which triangle points are in:

    >>> p = np.array([(0.1, 0.2), (1.5, 0.5)])
    >>> tri.find_simplex(p)
    array([ 1, -1], dtype=int32)

    We can also compute barycentric coordinates in triangle 1 for
    these points:

    >>> b = tri.transform[1,:2].dot(p - tri.transform[1,2])
    >>> np.c_[b, 1 - b.sum(axis=1)]
    array([[ 0.1       ,  0.2       ,  0.7       ],
           [ 1.27272727,  0.27272727, -0.54545455]])

    The coordinates for the first point are all positive, meaning it
    is indeed inside the triangle.

    References
    ----------
    .. [Qhull] http://www.qhull.org/

    """

    def __init__(self, points, furthest_site=False, incremental=False,
                 qhull_options=None):
        if np.ma.is_masked(points):
            raise ValueError('Input points cannot be a masked array')
        points = np.ascontiguousarray(points, dtype=np.double)

        if qhull_options is None:
            if not incremental:
                qhull_options = b"Qbb Qc Qz"
            else:
                qhull_options = b"Qc"
            if points.shape[1] >= 5:
                qhull_options += b" Qx"
        else:
            qhull_options = asbytes(qhull_options)

        # Run qhull
        qhull = _Qhull(b"d", points, qhull_options, required_options=b"Qt",
                       furthest_site=furthest_site, incremental=incremental)
        _QhullUser.__init__(self, qhull, incremental=incremental)

    def _update(self, qhull):
        qhull.triangulate()

        self.paraboloid_scale, self.paraboloid_shift = \
                               qhull.get_paraboloid_shift_scale()

        self.simplices, self.neighbors, self.equations, self.coplanar = \
                       qhull.get_simplex_facet_array()

        self.nsimplex = self.simplices.shape[0]
        self._transform = None
        self._vertex_to_simplex = None
        self._vertex_neighbor_vertices = None

        # Backwards compatibility (Scipy < 0.12.0)
        self.vertices = self.simplices

        _QhullUser._update(self, qhull)

    @property
    def transform(self):
        """
        Affine transform from ``x`` to the barycentric coordinates ``c``.

        :type: ndarray of double, shape (nsimplex, ndim+1, ndim)

        This is defined by::

            T c = x - r

        At vertex ``j``, ``c_j = 1`` and the other coordinates zero.

        For simplex ``i``, ``transform[i,:ndim,:ndim]`` contains
        inverse of the matrix ``T``, and ``transform[i,ndim,:]``
        contains the vector ``r``.

        """
        if self._transform is None:
            self._transform = _get_barycentric_transforms(self.points,
                                                          self.simplices,
                                                          np.finfo(float).eps)
        return self._transform

    @property
    @cython.boundscheck(False)
    def vertex_to_simplex(self):
        """
        Lookup array, from a vertex, to some simplex which it is a part of.

        :type: ndarray of int, shape (npoints,)
        """
        cdef int isimplex, k, ivertex, nsimplex, ndim
        cdef np.ndarray[np.npy_int, ndim=2] simplices
        cdef np.ndarray[np.npy_int, ndim=1] arr

        if self._vertex_to_simplex is None:
            self._vertex_to_simplex = np.empty((self.npoints,), dtype=np.intc)
            self._vertex_to_simplex.fill(-1)

            # include coplanar points
            self._vertex_to_simplex[self.coplanar[:,0]] = self.coplanar[:,2]

            # include other points
            arr = self._vertex_to_simplex
            simplices = self.simplices

            coplanar = self.coplanar
            ncoplanar = coplanar.shape[0]

            nsimplex = self.nsimplex
            ndim = self.ndim

            with nogil:
                for isimplex in xrange(nsimplex):
                    for k in xrange(ndim+1):
                        ivertex = simplices[isimplex, k]
                        if arr[ivertex] == -1:
                            arr[ivertex] = isimplex

        return self._vertex_to_simplex

    @property
    @cython.boundscheck(False)
    def vertex_neighbor_vertices(self):
        """
        Neighboring vertices of vertices.

        Tuple of two ndarrays of int: (indices, indptr). The indices of
        neighboring vertices of vertex `k` are
        ``indptr[indices[k]:indices[k+1]]``.

        """
        cdef int i, j, k, m, is_neighbor, is_missing, ndata, idata
        cdef int nsimplex, npoints, ndim
        cdef np.ndarray[np.npy_int, ndim=2] simplices
        cdef setlist.setlist_t sets

        if self._vertex_neighbor_vertices is None:
            ndim = self.ndim
            npoints = self.npoints
            nsimplex = self.nsimplex
            simplices = self.simplices

            setlist.init(&sets, npoints, ndim+1)

            try:
                with nogil:
                    for i in xrange(nsimplex):
                        for j in xrange(ndim+1):
                            for k in xrange(ndim+1):
                                if simplices[i,j] != simplices[i,k]:
                                    if setlist.add(&sets, simplices[i,j], simplices[i,k]):
                                        with gil:
                                            raise MemoryError

                self._vertex_neighbor_vertices = setlist.tocsr(&sets)
            finally:
                setlist.free(&sets)

        return self._vertex_neighbor_vertices

    @property
    @cython.boundscheck(False)
    def convex_hull(self):
        """
        Vertices of facets forming the convex hull of the point set.

        :type: ndarray of int, shape (nfaces, ndim)

        The array contains the indices of the points
        belonging to the (N-1)-dimensional facets that form the convex
        hull of the triangulation.

        .. note::

           Computing convex hulls via the Delaunay triangulation is
           inefficient and subject to increased numerical instability.
           Use `ConvexHull` instead.

        """
        cdef int isimplex, k, j, ndim, nsimplex, m, msize
        cdef object out
        cdef np.ndarray[np.npy_int, ndim=2] arr
        cdef np.ndarray[np.npy_int, ndim=2] neighbors
        cdef np.ndarray[np.npy_int, ndim=2] simplices

        neighbors = self.neighbors
        simplices = self.simplices
        ndim = self.ndim
        nsimplex = self.nsimplex

        msize = 10
        out = np.empty((msize, ndim), dtype=np.intc)
        arr = out

        m = 0
        for isimplex in xrange(nsimplex):
            for k in xrange(ndim+1):
                if neighbors[isimplex,k] == -1:
                    for j in xrange(ndim+1):
                        if j < k:
                            arr[m,j] = simplices[isimplex,j]
                        elif j > k:
                            arr[m,j-1] = simplices[isimplex,j]
                    m += 1

                    if m >= msize:
                        arr = None
                        msize = 2*msize + 1
                        try:
                            out.resize(msize, ndim)
                        except ValueError:
                            # Work around Cython bug on Python 2.4
                            out = np.resize(out, (msize, ndim))
                        arr = out

        arr = None
        try:
            out.resize(m, ndim)
        except ValueError:
            # XXX: work around a Cython bug on Python 2.4
            #      still leaks memory, though
            return np.resize(out, (m, ndim))
        return out

    @cython.boundscheck(False)
    def find_simplex(self, xi, bruteforce=False, tol=None):
        """
        find_simplex(self, xi, bruteforce=False, tol=None)

        Find the simplices containing the given points.

        Parameters
        ----------
        tri : DelaunayInfo
            Delaunay triangulation
        xi : ndarray of double, shape (..., ndim)
            Points to locate
        bruteforce : bool, optional
            Whether to only perform a brute-force search
        tol : float, optional
            Tolerance allowed in the inside-triangle check.
            Default is ``100*eps``.

        Returns
        -------
        i : ndarray of int, same shape as `xi`
            Indices of simplices containing each point.
            Points outside the triangulation get the value -1.

        Notes
        -----
        This uses an algorithm adapted from Qhull's ``qh_findbestfacet``,
        which makes use of the connection between a convex hull and a
        Delaunay triangulation. After finding the simplex closest to
        the point in N+1 dimensions, the algorithm falls back to
        directed search in N dimensions.

        """
        cdef DelaunayInfo_t info
        cdef int isimplex
        cdef double c[NPY_MAXDIMS]
        cdef double eps, eps_broad
        cdef int start
        cdef int k
        cdef np.ndarray[np.double_t, ndim=2] x
        cdef np.ndarray[np.npy_int, ndim=1] out_

        xi = np.asanyarray(xi)

        if xi.shape[-1] != self.ndim:
            raise ValueError("wrong dimensionality in xi")

        xi_shape = xi.shape
        xi = xi.reshape(-1, xi.shape[-1])
        x = np.ascontiguousarray(xi.astype(np.double))

        start = 0

        if tol is None:
            eps = 100 * np.finfo(np.double).eps
        else:
            eps = tol
        eps_broad = np.sqrt(eps)
        out = np.zeros((xi.shape[0],), dtype=np.intc)
        out_ = out
        _get_delaunay_info(&info, self, 1, 0, 0)

        if bruteforce:
            with nogil:
                for k in xrange(x.shape[0]):
                    isimplex = _find_simplex_bruteforce(
                        &info, c,
                        <double*>x.data + info.ndim*k,
                        eps, eps_broad)
                    out_[k] = isimplex
        else:
            with nogil:
                for k in xrange(x.shape[0]):
                    isimplex = _find_simplex(&info, c,
                                             <double*>x.data + info.ndim*k,
                                             &start, eps, eps_broad)
                    out_[k] = isimplex

        return out.reshape(xi_shape[:-1])

    @cython.boundscheck(False)
    def plane_distance(self, xi):
        """
        plane_distance(self, xi)

        Compute hyperplane distances to the point `xi` from all simplices.

        """
        cdef np.ndarray[np.double_t, ndim=2] x
        cdef np.ndarray[np.double_t, ndim=2] out_
        cdef DelaunayInfo_t info
        cdef double z[NPY_MAXDIMS+1]
        cdef int i, j, k

        if xi.shape[-1] != self.ndim:
            raise ValueError("xi has different dimensionality than "
                             "triangulation")

        xi_shape = xi.shape
        xi = xi.reshape(-1, xi.shape[-1])
        x = np.ascontiguousarray(xi.astype(np.double))

        _get_delaunay_info(&info, self, 0, 0, 0)

        out = np.zeros((x.shape[0], info.nsimplex), dtype=np.double)
        out_ = out

        with nogil:
            for i in xrange(x.shape[0]):
                for j in xrange(info.nsimplex):
                    _lift_point(&info, (<double*>x.data) + info.ndim*i, z)
                    out_[i,j] = _distplane(&info, j, z)

        return out.reshape(xi_shape[:-1] + (self.nsimplex,))

    def lift_points(self, x):
        """
        lift_points(self, x)

        Lift points to the Qhull paraboloid.

        """
        z = np.zeros(x.shape[:-1] + (x.shape[-1]+1,), dtype=np.double)
        z[...,:-1] = x
        z[...,-1] = (x**2).sum(axis=-1)
        z[...,-1] *= self.paraboloid_scale
        z[...,-1] += self.paraboloid_shift
        return z


def tsearch(tri, xi):
    """
    tsearch(tri, xi)

    Find simplices containing the given points. This function does the
    same thing as `Delaunay.find_simplex`.

    .. versionadded:: 0.9

    See Also
    --------
    Delaunay.find_simplex

    """
    return tri.find_simplex(xi)


#------------------------------------------------------------------------------
# Delaunay triangulation interface, for low-level C
#------------------------------------------------------------------------------

cdef int _get_delaunay_info(DelaunayInfo_t *info,
                            obj,
                            int compute_transform,
                            int compute_vertex_to_simplex,
                            int compute_vertex_neighbor_vertices) except -1:
    cdef np.ndarray[np.double_t, ndim=3] transform
    cdef np.ndarray[np.npy_int, ndim=1] vertex_to_simplex
    cdef np.ndarray[np.npy_int, ndim=1] vn_indices, vn_indptr
    cdef np.ndarray[np.double_t, ndim=2] points = obj.points
    cdef np.ndarray[np.npy_int, ndim=2] simplices = obj.simplices
    cdef np.ndarray[np.npy_int, ndim=2] neighbors = obj.neighbors
    cdef np.ndarray[np.double_t, ndim=2] equations = obj.equations
    cdef np.ndarray[np.double_t, ndim=1] min_bound = obj.min_bound
    cdef np.ndarray[np.double_t, ndim=1] max_bound = obj.max_bound

    info.ndim = points.shape[1]
    info.npoints = points.shape[0]
    info.nsimplex = simplices.shape[0]
    info.points = <double*>points.data
    info.simplices = <int*>simplices.data
    info.neighbors = <int*>neighbors.data
    info.equations = <double*>equations.data
    info.paraboloid_scale = obj.paraboloid_scale
    info.paraboloid_shift = obj.paraboloid_shift
    if compute_transform:
        transform = obj.transform
        info.transform = <double*>transform.data
    else:
        info.transform = NULL
    if compute_vertex_to_simplex:
        vertex_to_simplex = obj.vertex_to_simplex
        info.vertex_to_simplex = <int*>vertex_to_simplex.data
    else:
        info.vertex_to_simplex = NULL
    if compute_vertex_neighbor_vertices:
        vn_indices, vn_indptr = obj.vertex_neighbor_vertices
        info.vertex_neighbors_indices = <int*>vn_indices.data
        info.vertex_neighbors_indptr = <int*>vn_indptr.data
    else:
        info.vertex_neighbors_indices = NULL
        info.vertex_neighbors_indptr = NULL
    info.min_bound = <double*>min_bound.data
    info.max_bound = <double*>max_bound.data

    return 0


#------------------------------------------------------------------------------
# Convex hulls
#------------------------------------------------------------------------------

class ConvexHull(_QhullUser):
    """
    ConvexHull(points, incremental=False, qhull_options=None)

    Convex hulls in N dimensions.

    .. versionadded:: 0.12.0

    Parameters
    ----------
    points : ndarray of floats, shape (npoints, ndim)
        Coordinates of points to construct a convex hull from
    incremental : bool, optional
        Allow adding new points incrementally. This takes up some additional
        resources.
    qhull_options : str, optional
        Additional options to pass to Qhull. See Qhull manual
        for details. (Default: "Qx" for ndim > 4 and "" otherwise)
        Option "Qt" is always enabled.

    Attributes
    ----------
    points : ndarray of double, shape (npoints, ndim)
        Coordinates of input points.
    vertices : ndarray of ints, shape (nvertices,)
        Indices of points forming the vertices of the convex hull.
        For 2-D convex hulls, the vertices are in counterclockwise order.
        For other dimensions, they are in input order.
    simplices : ndarray of ints, shape (nfacet, ndim)
        Indices of points forming the simplical facets of the convex hull.
    neighbors : ndarray of ints, shape (nfacet, ndim)
        Indices of neighbor facets for each facet.
        The kth neighbor is opposite to the kth vertex.
        -1 denotes no neighbor.
    equations : ndarray of double, shape (nfacet, ndim+1)
        [normal, offset] forming the hyperplane equation of the facet
        (see [Qhull]_ documentation for more).
    coplanar : ndarray of int, shape (ncoplanar, 3)
        Indices of coplanar points and the corresponding indices of
        the nearest facets and nearest vertex indices.  Coplanar
        points are input points which were *not* included in the
        triangulation due to numerical precision issues.

        If option "Qc" is not specified, this list is not computed.

    Raises
    ------
    QhullError
        Raised when Qhull encounters an error condition, such as
        geometrical degeneracy when options to resolve are not enabled.
    ValueError
        Raised if an incompatible array is given as input.

    Notes
    -----
    The convex hull is computed using the Qhull library [Qhull]_.

    Do not call the ``add_points`` method from a ``__del__``
    destructor.

    Examples
    --------

    Convex hull of a random set of points:

    >>> from scipy.spatial import ConvexHull
    >>> points = np.random.rand(30, 2)   # 30 random points in 2-D
    >>> hull = ConvexHull(points)

    Plot it:

    >>> import matplotlib.pyplot as plt
    >>> plt.plot(points[:,0], points[:,1], 'o')
    >>> for simplex in hull.simplices:
    >>>     plt.plot(points[simplex,0], points[simplex,1], 'k-')

    We could also have directly used the vertices of the hull, which
    for 2-D are guaranteed to be in counterclockwise order:

    >>> plt.plot(points[hull.vertices,0], points[hull.vertices,1], 'r--', lw=2)
    >>> plt.plot(points[hull.vertices[0],0], points[hull.vertices[0],1], 'ro')
    >>> plt.show()

    References
    ----------
    .. [Qhull] http://www.qhull.org/

    """

    def __init__(self, points, incremental=False, qhull_options=None):
        if np.ma.is_masked(points):
            raise ValueError('Input points cannot be a masked array')
        points = np.ascontiguousarray(points, dtype=np.double)

        if qhull_options is None:
            qhull_options = b""
            if points.shape[1] >= 5:
                qhull_options += b"Qx"
        else:
            qhull_options = asbytes(qhull_options)

        # Run qhull
        qhull = _Qhull(b"i", points, qhull_options, required_options=b"Qt",
                       incremental=incremental)
        _QhullUser.__init__(self, qhull, incremental=incremental)

    def _update(self, qhull):
        qhull.triangulate()

        self.simplices, self.neighbors, self.equations, self.coplanar = \
                       qhull.get_simplex_facet_array()

        if qhull.ndim == 2:
            self._vertices = qhull.get_extremes_2d()
        else:
            self._vertices = None

        self.nsimplex = self.simplices.shape[0]

        _QhullUser._update(self, qhull)

    @property
    def vertices(self):
        if self._vertices is None:
            self._vertices = np.unique(self.simplices)
        return self._vertices


#------------------------------------------------------------------------------
# Voronoi diagrams
#------------------------------------------------------------------------------

class Voronoi(_QhullUser):
    """
    Voronoi(points, furthest_site=False, incremental=False, qhull_options=None)

    Voronoi diagrams in N dimensions.

    .. versionadded:: 0.12.0

    Parameters
    ----------
    points : ndarray of floats, shape (npoints, ndim)
        Coordinates of points to construct a convex hull from
    furthest_site : bool, optional
        Whether to compute a furthest-site Voronoi diagram. Default: False
    incremental : bool, optional
        Allow adding new points incrementally. This takes up some additional
        resources.
    qhull_options : str, optional
        Additional options to pass to Qhull. See Qhull manual
        for details. (Default: "Qbb Qc Qz Qx" for ndim > 4 and
        "Qbb Qc Qz" otherwise. Incremental mode omits "Qz".)

    Attributes
    ----------
    points : ndarray of double, shape (npoints, ndim)
        Coordinates of input points.
    vertices : ndarray of double, shape (nvertices, ndim)
        Coordinates of the Voronoi vertices.
    ridge_points : ndarray of ints, shape (nridges, 2)
        Indices of the points between which each Voronoi ridge lies.
    ridge_vertices : list of list of ints, shape (nridges, *)
        Indices of the Voronoi vertices forming each Voronoi ridge.
    regions : list of list of ints, shape (nregions, *)
        Indices of the Voronoi vertices forming each Voronoi region.
        -1 indicates vertex outside the Voronoi diagram.
    point_region : list of ints, shape (npoints)
        Index of the Voronoi region for each input point.
        If qhull option "Qc" was not specified, the list will contain -1
        for points that are not associated with a Voronoi region.

    Raises
    ------
    QhullError
        Raised when Qhull encounters an error condition, such as
        geometrical degeneracy when options to resolve are not enabled.
    ValueError
        Raised if an incompatible array is given as input.

    Notes
    -----
    The Voronoi diagram is computed using the Qhull library [Qhull]_.

    Do not call the ``add_points`` method from a ``__del__``
    destructor.

    Examples
    --------
    Voronoi diagram for a set of point:

    >>> points = np.array([[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2],
    ...                    [2, 0], [2, 1], [2, 2]])
    >>> from scipy.spatial import Voronoi, voronoi_plot_2d
    >>> vor = Voronoi(points)

    Plot it:

    >>> import matplotlib.pyplot as plt
    >>> voronoi_plot_2d(vor)
    >>> plt.show()

    The Voronoi vertices:

    >>> vor.vertices
    array([[ 0.5,  0.5],
           [ 1.5,  0.5],
           [ 0.5,  1.5],
           [ 1.5,  1.5]])

    There is a single finite Voronoi region, and four finite Voronoi
    ridges:

    >>> vor.regions
    [[], [-1, 0], [-1, 1], [1, -1, 0], [3, -1, 2], [-1, 3], [-1, 2], [3, 2, 0, 1], [2, -1, 0], [3, -1, 1]]
    >>> vor.ridge_vertices
    [[-1, 0], [-1, 0], [-1, 1], [-1, 1], [0, 1], [-1, 3], [-1, 2], [2, 3], [-1, 3], [-1, 2], [0, 2], [1, 3]]

    The ridges are perpendicular between lines drawn between the following
    input points:

    >>> vor.ridge_points
    array([[0, 1],
           [0, 3],
           [6, 3],
           [6, 7],
           [3, 4],
           [5, 8],
           [5, 2],
           [5, 4],
           [8, 7],
           [2, 1],
           [4, 1],
           [4, 7]], dtype=int32)

    References
    ----------
    .. [Qhull] http://www.qhull.org/

    """
    def __init__(self, points, furthest_site=False, incremental=False,
                 qhull_options=None):
        if np.ma.is_masked(points):
            raise ValueError('Input points cannot be a masked array')
        points = np.ascontiguousarray(points, dtype=np.double)

        if qhull_options is None:
            if not incremental:
                qhull_options = b"Qbb Qc Qz"
            else:
                qhull_options = b"Qc"
            if points.shape[1] >= 5:
                qhull_options += b" Qx"
        else:
            qhull_options = asbytes(qhull_options)

        # Run qhull
        qhull = _Qhull(b"v", points, qhull_options, furthest_site=furthest_site,
                       incremental=incremental)
        _QhullUser.__init__(self, qhull, incremental=incremental)

    def _update(self, qhull):
        self.vertices, self.ridge_points, self.ridge_vertices, \
                       self.regions, self.point_region = \
                       qhull.get_voronoi_diagram()

        self._ridge_dict = None

        _QhullUser._update(self, qhull)

    @property
    def ridge_dict(self):
        if self._ridge_dict is None:
            self._ridge_dict = dict(zip(map(tuple, self.ridge_points.tolist()),
                                        self.ridge_vertices))
        return self._ridge_dict