1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081
|
/*<html><pre> -<a href="qh-geom.htm"
>-------------------------------</a><a name="TOP">-</a>
geom2.c
infrequently used geometric routines of qhull
see qh-geom.htm and geom.h
Copyright (c) 1993-2012 The Geometry Center.
$Id: //main/2011/qhull/src/libqhull/geom2.c#3 $$Change: 1464 $
$DateTime: 2012/01/25 22:58:41 $$Author: bbarber $
frequently used code goes into geom.c
*/
#include "qhull_a.h"
/*================== functions in alphabetic order ============*/
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="copypoints">-</a>
qh_copypoints( points, numpoints, dimension)
return qh_malloc'd copy of points
*/
coordT *qh_copypoints(coordT *points, int numpoints, int dimension) {
int size;
coordT *newpoints;
size= numpoints * dimension * (int)sizeof(coordT);
if (!(newpoints=(coordT*)qh_malloc((size_t)size))) {
qh_fprintf(qh ferr, 6004, "qhull error: insufficient memory to copy %d points\n",
numpoints);
qh_errexit(qh_ERRmem, NULL, NULL);
}
memcpy((char *)newpoints, (char *)points, (size_t)size);
return newpoints;
} /* copypoints */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="crossproduct">-</a>
qh_crossproduct( dim, vecA, vecB, vecC )
crossproduct of 2 dim vectors
C= A x B
notes:
from Glasner, Graphics Gems I, p. 639
only defined for dim==3
*/
void qh_crossproduct(int dim, realT vecA[3], realT vecB[3], realT vecC[3]){
if (dim == 3) {
vecC[0]= det2_(vecA[1], vecA[2],
vecB[1], vecB[2]);
vecC[1]= - det2_(vecA[0], vecA[2],
vecB[0], vecB[2]);
vecC[2]= det2_(vecA[0], vecA[1],
vecB[0], vecB[1]);
}
} /* vcross */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="determinant">-</a>
qh_determinant( rows, dim, nearzero )
compute signed determinant of a square matrix
uses qh.NEARzero to test for degenerate matrices
returns:
determinant
overwrites rows and the matrix
if dim == 2 or 3
nearzero iff determinant < qh NEARzero[dim-1]
(!quite correct, not critical)
if dim >= 4
nearzero iff diagonal[k] < qh NEARzero[k]
*/
realT qh_determinant(realT **rows, int dim, boolT *nearzero) {
realT det=0;
int i;
boolT sign= False;
*nearzero= False;
if (dim < 2) {
qh_fprintf(qh ferr, 6005, "qhull internal error (qh_determinate): only implemented for dimension >= 2\n");
qh_errexit(qh_ERRqhull, NULL, NULL);
}else if (dim == 2) {
det= det2_(rows[0][0], rows[0][1],
rows[1][0], rows[1][1]);
if (fabs_(det) < qh NEARzero[1]) /* not really correct, what should this be? */
*nearzero= True;
}else if (dim == 3) {
det= det3_(rows[0][0], rows[0][1], rows[0][2],
rows[1][0], rows[1][1], rows[1][2],
rows[2][0], rows[2][1], rows[2][2]);
if (fabs_(det) < qh NEARzero[2]) /* not really correct, what should this be? */
*nearzero= True;
}else {
qh_gausselim(rows, dim, dim, &sign, nearzero); /* if nearzero, diagonal still ok*/
det= 1.0;
for (i=dim; i--; )
det *= (rows[i])[i];
if (sign)
det= -det;
}
return det;
} /* determinant */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="detjoggle">-</a>
qh_detjoggle( points, numpoints, dimension )
determine default max joggle for point array
as qh_distround * qh_JOGGLEdefault
returns:
initial value for JOGGLEmax from points and REALepsilon
notes:
computes DISTround since qh_maxmin not called yet
if qh SCALElast, last dimension will be scaled later to MAXwidth
loop duplicated from qh_maxmin
*/
realT qh_detjoggle(pointT *points, int numpoints, int dimension) {
realT abscoord, distround, joggle, maxcoord, mincoord;
pointT *point, *pointtemp;
realT maxabs= -REALmax;
realT sumabs= 0;
realT maxwidth= 0;
int k;
for (k=0; k < dimension; k++) {
if (qh SCALElast && k == dimension-1)
abscoord= maxwidth;
else if (qh DELAUNAY && k == dimension-1) /* will qh_setdelaunay() */
abscoord= 2 * maxabs * maxabs; /* may be low by qh hull_dim/2 */
else {
maxcoord= -REALmax;
mincoord= REALmax;
FORALLpoint_(points, numpoints) {
maximize_(maxcoord, point[k]);
minimize_(mincoord, point[k]);
}
maximize_(maxwidth, maxcoord-mincoord);
abscoord= fmax_(maxcoord, -mincoord);
}
sumabs += abscoord;
maximize_(maxabs, abscoord);
} /* for k */
distround= qh_distround(qh hull_dim, maxabs, sumabs);
joggle= distround * qh_JOGGLEdefault;
maximize_(joggle, REALepsilon * qh_JOGGLEdefault);
trace2((qh ferr, 2001, "qh_detjoggle: joggle=%2.2g maxwidth=%2.2g\n", joggle, maxwidth));
return joggle;
} /* detjoggle */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="detroundoff">-</a>
qh_detroundoff()
determine maximum roundoff errors from
REALepsilon, REALmax, REALmin, qh.hull_dim, qh.MAXabs_coord,
qh.MAXsumcoord, qh.MAXwidth, qh.MINdenom_1
accounts for qh.SETroundoff, qh.RANDOMdist, qh MERGEexact
qh.premerge_cos, qh.postmerge_cos, qh.premerge_centrum,
qh.postmerge_centrum, qh.MINoutside,
qh_RATIOnearinside, qh_COPLANARratio, qh_WIDEcoplanar
returns:
sets qh.DISTround, etc. (see below)
appends precision constants to qh.qhull_options
see:
qh_maxmin() for qh.NEARzero
design:
determine qh.DISTround for distance computations
determine minimum denominators for qh_divzero
determine qh.ANGLEround for angle computations
adjust qh.premerge_cos,... for roundoff error
determine qh.ONEmerge for maximum error due to a single merge
determine qh.NEARinside, qh.MAXcoplanar, qh.MINvisible,
qh.MINoutside, qh.WIDEfacet
initialize qh.max_vertex and qh.minvertex
*/
void qh_detroundoff(void) {
qh_option("_max-width", NULL, &qh MAXwidth);
if (!qh SETroundoff) {
qh DISTround= qh_distround(qh hull_dim, qh MAXabs_coord, qh MAXsumcoord);
if (qh RANDOMdist)
qh DISTround += qh RANDOMfactor * qh MAXabs_coord;
qh_option("Error-roundoff", NULL, &qh DISTround);
}
qh MINdenom= qh MINdenom_1 * qh MAXabs_coord;
qh MINdenom_1_2= sqrt(qh MINdenom_1 * qh hull_dim) ; /* if will be normalized */
qh MINdenom_2= qh MINdenom_1_2 * qh MAXabs_coord;
/* for inner product */
qh ANGLEround= 1.01 * qh hull_dim * REALepsilon;
if (qh RANDOMdist)
qh ANGLEround += qh RANDOMfactor;
if (qh premerge_cos < REALmax/2) {
qh premerge_cos -= qh ANGLEround;
if (qh RANDOMdist)
qh_option("Angle-premerge-with-random", NULL, &qh premerge_cos);
}
if (qh postmerge_cos < REALmax/2) {
qh postmerge_cos -= qh ANGLEround;
if (qh RANDOMdist)
qh_option("Angle-postmerge-with-random", NULL, &qh postmerge_cos);
}
qh premerge_centrum += 2 * qh DISTround; /*2 for centrum and distplane()*/
qh postmerge_centrum += 2 * qh DISTround;
if (qh RANDOMdist && (qh MERGEexact || qh PREmerge))
qh_option("Centrum-premerge-with-random", NULL, &qh premerge_centrum);
if (qh RANDOMdist && qh POSTmerge)
qh_option("Centrum-postmerge-with-random", NULL, &qh postmerge_centrum);
{ /* compute ONEmerge, max vertex offset for merging simplicial facets */
realT maxangle= 1.0, maxrho;
minimize_(maxangle, qh premerge_cos);
minimize_(maxangle, qh postmerge_cos);
/* max diameter * sin theta + DISTround for vertex to its hyperplane */
qh ONEmerge= sqrt((realT)qh hull_dim) * qh MAXwidth *
sqrt(1.0 - maxangle * maxangle) + qh DISTround;
maxrho= qh hull_dim * qh premerge_centrum + qh DISTround;
maximize_(qh ONEmerge, maxrho);
maxrho= qh hull_dim * qh postmerge_centrum + qh DISTround;
maximize_(qh ONEmerge, maxrho);
if (qh MERGING)
qh_option("_one-merge", NULL, &qh ONEmerge);
}
qh NEARinside= qh ONEmerge * qh_RATIOnearinside; /* only used if qh KEEPnearinside */
if (qh JOGGLEmax < REALmax/2 && (qh KEEPcoplanar || qh KEEPinside)) {
realT maxdist; /* adjust qh.NEARinside for joggle */
qh KEEPnearinside= True;
maxdist= sqrt((realT)qh hull_dim) * qh JOGGLEmax + qh DISTround;
maxdist= 2*maxdist; /* vertex and coplanar point can joggle in opposite directions */
maximize_(qh NEARinside, maxdist); /* must agree with qh_nearcoplanar() */
}
if (qh KEEPnearinside)
qh_option("_near-inside", NULL, &qh NEARinside);
if (qh JOGGLEmax < qh DISTround) {
qh_fprintf(qh ferr, 6006, "qhull error: the joggle for 'QJn', %.2g, is below roundoff for distance computations, %.2g\n",
qh JOGGLEmax, qh DISTround);
qh_errexit(qh_ERRinput, NULL, NULL);
}
if (qh MINvisible > REALmax/2) {
if (!qh MERGING)
qh MINvisible= qh DISTround;
else if (qh hull_dim <= 3)
qh MINvisible= qh premerge_centrum;
else
qh MINvisible= qh_COPLANARratio * qh premerge_centrum;
if (qh APPROXhull && qh MINvisible > qh MINoutside)
qh MINvisible= qh MINoutside;
qh_option("Visible-distance", NULL, &qh MINvisible);
}
if (qh MAXcoplanar > REALmax/2) {
qh MAXcoplanar= qh MINvisible;
qh_option("U-coplanar-distance", NULL, &qh MAXcoplanar);
}
if (!qh APPROXhull) { /* user may specify qh MINoutside */
qh MINoutside= 2 * qh MINvisible;
if (qh premerge_cos < REALmax/2)
maximize_(qh MINoutside, (1- qh premerge_cos) * qh MAXabs_coord);
qh_option("Width-outside", NULL, &qh MINoutside);
}
qh WIDEfacet= qh MINoutside;
maximize_(qh WIDEfacet, qh_WIDEcoplanar * qh MAXcoplanar);
maximize_(qh WIDEfacet, qh_WIDEcoplanar * qh MINvisible);
qh_option("_wide-facet", NULL, &qh WIDEfacet);
if (qh MINvisible > qh MINoutside + 3 * REALepsilon
&& !qh BESToutside && !qh FORCEoutput)
qh_fprintf(qh ferr, 7001, "qhull input warning: minimum visibility V%.2g is greater than \nminimum outside W%.2g. Flipped facets are likely.\n",
qh MINvisible, qh MINoutside);
qh max_vertex= qh DISTround;
qh min_vertex= -qh DISTround;
/* numeric constants reported in printsummary */
} /* detroundoff */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="detsimplex">-</a>
qh_detsimplex( apex, points, dim, nearzero )
compute determinant of a simplex with point apex and base points
returns:
signed determinant and nearzero from qh_determinant
notes:
uses qh.gm_matrix/qh.gm_row (assumes they're big enough)
design:
construct qm_matrix by subtracting apex from points
compute determinate
*/
realT qh_detsimplex(pointT *apex, setT *points, int dim, boolT *nearzero) {
pointT *coorda, *coordp, *gmcoord, *point, **pointp;
coordT **rows;
int k, i=0;
realT det;
zinc_(Zdetsimplex);
gmcoord= qh gm_matrix;
rows= qh gm_row;
FOREACHpoint_(points) {
if (i == dim)
break;
rows[i++]= gmcoord;
coordp= point;
coorda= apex;
for (k=dim; k--; )
*(gmcoord++)= *coordp++ - *coorda++;
}
if (i < dim) {
qh_fprintf(qh ferr, 6007, "qhull internal error (qh_detsimplex): #points %d < dimension %d\n",
i, dim);
qh_errexit(qh_ERRqhull, NULL, NULL);
}
det= qh_determinant(rows, dim, nearzero);
trace2((qh ferr, 2002, "qh_detsimplex: det=%2.2g for point p%d, dim %d, nearzero? %d\n",
det, qh_pointid(apex), dim, *nearzero));
return det;
} /* detsimplex */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="distnorm">-</a>
qh_distnorm( dim, point, normal, offset )
return distance from point to hyperplane at normal/offset
returns:
dist
notes:
dist > 0 if point is outside of hyperplane
see:
qh_distplane in geom.c
*/
realT qh_distnorm(int dim, pointT *point, pointT *normal, realT *offsetp) {
coordT *normalp= normal, *coordp= point;
realT dist;
int k;
dist= *offsetp;
for (k=dim; k--; )
dist += *(coordp++) * *(normalp++);
return dist;
} /* distnorm */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="distround">-</a>
qh_distround(dimension, maxabs, maxsumabs )
compute maximum round-off error for a distance computation
to a normalized hyperplane
maxabs is the maximum absolute value of a coordinate
maxsumabs is the maximum possible sum of absolute coordinate values
returns:
max dist round for REALepsilon
notes:
calculate roundoff error according to
Lemma 3.2-1 of Golub and van Loan "Matrix Computation"
use sqrt(dim) since one vector is normalized
or use maxsumabs since one vector is < 1
*/
realT qh_distround(int dimension, realT maxabs, realT maxsumabs) {
realT maxdistsum, maxround;
maxdistsum= sqrt((realT)dimension) * maxabs;
minimize_( maxdistsum, maxsumabs);
maxround= REALepsilon * (dimension * maxdistsum * 1.01 + maxabs);
/* adds maxabs for offset */
trace4((qh ferr, 4008, "qh_distround: %2.2g maxabs %2.2g maxsumabs %2.2g maxdistsum %2.2g\n",
maxround, maxabs, maxsumabs, maxdistsum));
return maxround;
} /* distround */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="divzero">-</a>
qh_divzero( numer, denom, mindenom1, zerodiv )
divide by a number that's nearly zero
mindenom1= minimum denominator for dividing into 1.0
returns:
quotient
sets zerodiv and returns 0.0 if it would overflow
design:
if numer is nearly zero and abs(numer) < abs(denom)
return numer/denom
else if numer is nearly zero
return 0 and zerodiv
else if denom/numer non-zero
return numer/denom
else
return 0 and zerodiv
*/
realT qh_divzero(realT numer, realT denom, realT mindenom1, boolT *zerodiv) {
realT temp, numerx, denomx;
if (numer < mindenom1 && numer > -mindenom1) {
numerx= fabs_(numer);
denomx= fabs_(denom);
if (numerx < denomx) {
*zerodiv= False;
return numer/denom;
}else {
*zerodiv= True;
return 0.0;
}
}
temp= denom/numer;
if (temp > mindenom1 || temp < -mindenom1) {
*zerodiv= False;
return numer/denom;
}else {
*zerodiv= True;
return 0.0;
}
} /* divzero */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="facetarea">-</a>
qh_facetarea( facet )
return area for a facet
notes:
if non-simplicial,
uses centrum to triangulate facet and sums the projected areas.
if (qh DELAUNAY),
computes projected area instead for last coordinate
assumes facet->normal exists
projecting tricoplanar facets to the hyperplane does not appear to make a difference
design:
if simplicial
compute area
else
for each ridge
compute area from centrum to ridge
negate area if upper Delaunay facet
*/
realT qh_facetarea(facetT *facet) {
vertexT *apex;
pointT *centrum;
realT area= 0.0;
ridgeT *ridge, **ridgep;
if (facet->simplicial) {
apex= SETfirstt_(facet->vertices, vertexT);
area= qh_facetarea_simplex(qh hull_dim, apex->point, facet->vertices,
apex, facet->toporient, facet->normal, &facet->offset);
}else {
if (qh CENTERtype == qh_AScentrum)
centrum= facet->center;
else
centrum= qh_getcentrum(facet);
FOREACHridge_(facet->ridges)
area += qh_facetarea_simplex(qh hull_dim, centrum, ridge->vertices,
NULL, (boolT)(ridge->top == facet), facet->normal, &facet->offset);
if (qh CENTERtype != qh_AScentrum)
qh_memfree(centrum, qh normal_size);
}
if (facet->upperdelaunay && qh DELAUNAY)
area= -area; /* the normal should be [0,...,1] */
trace4((qh ferr, 4009, "qh_facetarea: f%d area %2.2g\n", facet->id, area));
return area;
} /* facetarea */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="facetarea_simplex">-</a>
qh_facetarea_simplex( dim, apex, vertices, notvertex, toporient, normal, offset )
return area for a simplex defined by
an apex, a base of vertices, an orientation, and a unit normal
if simplicial or tricoplanar facet,
notvertex is defined and it is skipped in vertices
returns:
computes area of simplex projected to plane [normal,offset]
returns 0 if vertex too far below plane (qh WIDEfacet)
vertex can't be apex of tricoplanar facet
notes:
if (qh DELAUNAY),
computes projected area instead for last coordinate
uses qh gm_matrix/gm_row and qh hull_dim
helper function for qh_facetarea
design:
if Notvertex
translate simplex to apex
else
project simplex to normal/offset
translate simplex to apex
if Delaunay
set last row/column to 0 with -1 on diagonal
else
set last row to Normal
compute determinate
scale and flip sign for area
*/
realT qh_facetarea_simplex(int dim, coordT *apex, setT *vertices,
vertexT *notvertex, boolT toporient, coordT *normal, realT *offset) {
pointT *coorda, *coordp, *gmcoord;
coordT **rows, *normalp;
int k, i=0;
realT area, dist;
vertexT *vertex, **vertexp;
boolT nearzero;
gmcoord= qh gm_matrix;
rows= qh gm_row;
FOREACHvertex_(vertices) {
if (vertex == notvertex)
continue;
rows[i++]= gmcoord;
coorda= apex;
coordp= vertex->point;
normalp= normal;
if (notvertex) {
for (k=dim; k--; )
*(gmcoord++)= *coordp++ - *coorda++;
}else {
dist= *offset;
for (k=dim; k--; )
dist += *coordp++ * *normalp++;
if (dist < -qh WIDEfacet) {
zinc_(Znoarea);
return 0.0;
}
coordp= vertex->point;
normalp= normal;
for (k=dim; k--; )
*(gmcoord++)= (*coordp++ - dist * *normalp++) - *coorda++;
}
}
if (i != dim-1) {
qh_fprintf(qh ferr, 6008, "qhull internal error (qh_facetarea_simplex): #points %d != dim %d -1\n",
i, dim);
qh_errexit(qh_ERRqhull, NULL, NULL);
}
rows[i]= gmcoord;
if (qh DELAUNAY) {
for (i=0; i < dim-1; i++)
rows[i][dim-1]= 0.0;
for (k=dim; k--; )
*(gmcoord++)= 0.0;
rows[dim-1][dim-1]= -1.0;
}else {
normalp= normal;
for (k=dim; k--; )
*(gmcoord++)= *normalp++;
}
zinc_(Zdetsimplex);
area= qh_determinant(rows, dim, &nearzero);
if (toporient)
area= -area;
area *= qh AREAfactor;
trace4((qh ferr, 4010, "qh_facetarea_simplex: area=%2.2g for point p%d, toporient %d, nearzero? %d\n",
area, qh_pointid(apex), toporient, nearzero));
return area;
} /* facetarea_simplex */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="facetcenter">-</a>
qh_facetcenter( vertices )
return Voronoi center (Voronoi vertex) for a facet's vertices
returns:
return temporary point equal to the center
see:
qh_voronoi_center()
*/
pointT *qh_facetcenter(setT *vertices) {
setT *points= qh_settemp(qh_setsize(vertices));
vertexT *vertex, **vertexp;
pointT *center;
FOREACHvertex_(vertices)
qh_setappend(&points, vertex->point);
center= qh_voronoi_center(qh hull_dim-1, points);
qh_settempfree(&points);
return center;
} /* facetcenter */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="findgooddist">-</a>
qh_findgooddist( point, facetA, dist, facetlist )
find best good facet visible for point from facetA
assumes facetA is visible from point
returns:
best facet, i.e., good facet that is furthest from point
distance to best facet
NULL if none
moves good, visible facets (and some other visible facets)
to end of qh facet_list
notes:
uses qh visit_id
design:
initialize bestfacet if facetA is good
move facetA to end of facetlist
for each facet on facetlist
for each unvisited neighbor of facet
move visible neighbors to end of facetlist
update best good neighbor
if no good neighbors, update best facet
*/
facetT *qh_findgooddist(pointT *point, facetT *facetA, realT *distp,
facetT **facetlist) {
realT bestdist= -REALmax, dist;
facetT *neighbor, **neighborp, *bestfacet=NULL, *facet;
boolT goodseen= False;
if (facetA->good) {
zzinc_(Zcheckpart); /* calls from check_bestdist occur after print stats */
qh_distplane(point, facetA, &bestdist);
bestfacet= facetA;
goodseen= True;
}
qh_removefacet(facetA);
qh_appendfacet(facetA);
*facetlist= facetA;
facetA->visitid= ++qh visit_id;
FORALLfacet_(*facetlist) {
FOREACHneighbor_(facet) {
if (neighbor->visitid == qh visit_id)
continue;
neighbor->visitid= qh visit_id;
if (goodseen && !neighbor->good)
continue;
zzinc_(Zcheckpart);
qh_distplane(point, neighbor, &dist);
if (dist > 0) {
qh_removefacet(neighbor);
qh_appendfacet(neighbor);
if (neighbor->good) {
goodseen= True;
if (dist > bestdist) {
bestdist= dist;
bestfacet= neighbor;
}
}
}
}
}
if (bestfacet) {
*distp= bestdist;
trace2((qh ferr, 2003, "qh_findgooddist: p%d is %2.2g above good facet f%d\n",
qh_pointid(point), bestdist, bestfacet->id));
return bestfacet;
}
trace4((qh ferr, 4011, "qh_findgooddist: no good facet for p%d above f%d\n",
qh_pointid(point), facetA->id));
return NULL;
} /* findgooddist */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="getarea">-</a>
qh_getarea( facetlist )
set area of all facets in facetlist
collect statistics
nop if hasAreaVolume
returns:
sets qh totarea/totvol to total area and volume of convex hull
for Delaunay triangulation, computes projected area of the lower or upper hull
ignores upper hull if qh ATinfinity
notes:
could compute outer volume by expanding facet area by rays from interior
the following attempt at perpendicular projection underestimated badly:
qh.totoutvol += (-dist + facet->maxoutside + qh DISTround)
* area/ qh hull_dim;
design:
for each facet on facetlist
compute facet->area
update qh.totarea and qh.totvol
*/
void qh_getarea(facetT *facetlist) {
realT area;
realT dist;
facetT *facet;
if (qh hasAreaVolume)
return;
if (qh REPORTfreq)
qh_fprintf(qh ferr, 8020, "computing area of each facet and volume of the convex hull\n");
else
trace1((qh ferr, 1001, "qh_getarea: computing volume and area for each facet\n"));
qh totarea= qh totvol= 0.0;
FORALLfacet_(facetlist) {
if (!facet->normal)
continue;
if (facet->upperdelaunay && qh ATinfinity)
continue;
if (!facet->isarea) {
facet->f.area= qh_facetarea(facet);
facet->isarea= True;
}
area= facet->f.area;
if (qh DELAUNAY) {
if (facet->upperdelaunay == qh UPPERdelaunay)
qh totarea += area;
}else {
qh totarea += area;
qh_distplane(qh interior_point, facet, &dist);
qh totvol += -dist * area/ qh hull_dim;
}
if (qh PRINTstatistics) {
wadd_(Wareatot, area);
wmax_(Wareamax, area);
wmin_(Wareamin, area);
}
}
qh hasAreaVolume= True;
} /* getarea */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="gram_schmidt">-</a>
qh_gram_schmidt( dim, row )
implements Gram-Schmidt orthogonalization by rows
returns:
false if zero norm
overwrites rows[dim][dim]
notes:
see Golub & van Loan Algorithm 6.2-2
overflow due to small divisors not handled
design:
for each row
compute norm for row
if non-zero, normalize row
for each remaining rowA
compute inner product of row and rowA
reduce rowA by row * inner product
*/
boolT qh_gram_schmidt(int dim, realT **row) {
realT *rowi, *rowj, norm;
int i, j, k;
for (i=0; i < dim; i++) {
rowi= row[i];
for (norm= 0.0, k= dim; k--; rowi++)
norm += *rowi * *rowi;
norm= sqrt(norm);
wmin_(Wmindenom, norm);
if (norm == 0.0) /* either 0 or overflow due to sqrt */
return False;
for (k=dim; k--; )
*(--rowi) /= norm;
for (j=i+1; j < dim; j++) {
rowj= row[j];
for (norm= 0.0, k=dim; k--; )
norm += *rowi++ * *rowj++;
for (k=dim; k--; )
*(--rowj) -= *(--rowi) * norm;
}
}
return True;
} /* gram_schmidt */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="inthresholds">-</a>
qh_inthresholds( normal, angle )
return True if normal within qh.lower_/upper_threshold
returns:
estimate of angle by summing of threshold diffs
angle may be NULL
smaller "angle" is better
notes:
invalid if qh.SPLITthresholds
see:
qh.lower_threshold in qh_initbuild()
qh_initthresholds()
design:
for each dimension
test threshold
*/
boolT qh_inthresholds(coordT *normal, realT *angle) {
boolT within= True;
int k;
realT threshold;
if (angle)
*angle= 0.0;
for (k=0; k < qh hull_dim; k++) {
threshold= qh lower_threshold[k];
if (threshold > -REALmax/2) {
if (normal[k] < threshold)
within= False;
if (angle) {
threshold -= normal[k];
*angle += fabs_(threshold);
}
}
if (qh upper_threshold[k] < REALmax/2) {
threshold= qh upper_threshold[k];
if (normal[k] > threshold)
within= False;
if (angle) {
threshold -= normal[k];
*angle += fabs_(threshold);
}
}
}
return within;
} /* inthresholds */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="joggleinput">-</a>
qh_joggleinput()
randomly joggle input to Qhull by qh.JOGGLEmax
initial input is qh.first_point/qh.num_points of qh.hull_dim
repeated calls use qh.input_points/qh.num_points
returns:
joggles points at qh.first_point/qh.num_points
copies data to qh.input_points/qh.input_malloc if first time
determines qh.JOGGLEmax if it was zero
if qh.DELAUNAY
computes the Delaunay projection of the joggled points
notes:
if qh.DELAUNAY, unnecessarily joggles the last coordinate
the initial 'QJn' may be set larger than qh_JOGGLEmaxincrease
design:
if qh.DELAUNAY
set qh.SCALElast for reduced precision errors
if first call
initialize qh.input_points to the original input points
if qh.JOGGLEmax == 0
determine default qh.JOGGLEmax
else
increase qh.JOGGLEmax according to qh.build_cnt
joggle the input by adding a random number in [-qh.JOGGLEmax,qh.JOGGLEmax]
if qh.DELAUNAY
sets the Delaunay projection
*/
void qh_joggleinput(void) {
int i, seed, size;
coordT *coordp, *inputp;
realT randr, randa, randb;
if (!qh input_points) { /* first call */
qh input_points= qh first_point;
qh input_malloc= qh POINTSmalloc;
size= qh num_points * qh hull_dim * sizeof(coordT);
if (!(qh first_point=(coordT*)qh_malloc((size_t)size))) {
qh_fprintf(qh ferr, 6009, "qhull error: insufficient memory to joggle %d points\n",
qh num_points);
qh_errexit(qh_ERRmem, NULL, NULL);
}
qh POINTSmalloc= True;
if (qh JOGGLEmax == 0.0) {
qh JOGGLEmax= qh_detjoggle(qh input_points, qh num_points, qh hull_dim);
qh_option("QJoggle", NULL, &qh JOGGLEmax);
}
}else { /* repeated call */
if (!qh RERUN && qh build_cnt > qh_JOGGLEretry) {
if (((qh build_cnt-qh_JOGGLEretry-1) % qh_JOGGLEagain) == 0) {
realT maxjoggle= qh MAXwidth * qh_JOGGLEmaxincrease;
if (qh JOGGLEmax < maxjoggle) {
qh JOGGLEmax *= qh_JOGGLEincrease;
minimize_(qh JOGGLEmax, maxjoggle);
}
}
}
qh_option("QJoggle", NULL, &qh JOGGLEmax);
}
if (qh build_cnt > 1 && qh JOGGLEmax > fmax_(qh MAXwidth/4, 0.1)) {
qh_fprintf(qh ferr, 6010, "qhull error: the current joggle for 'QJn', %.2g, is too large for the width\nof the input. If possible, recompile Qhull with higher-precision reals.\n",
qh JOGGLEmax);
qh_errexit(qh_ERRqhull, NULL, NULL);
}
/* for some reason, using qh ROTATErandom and qh_RANDOMseed does not repeat the run. Use 'TRn' instead */
seed= qh_RANDOMint;
qh_option("_joggle-seed", &seed, NULL);
trace0((qh ferr, 6, "qh_joggleinput: joggle input by %2.2g with seed %d\n",
qh JOGGLEmax, seed));
inputp= qh input_points;
coordp= qh first_point;
randa= 2.0 * qh JOGGLEmax/qh_RANDOMmax;
randb= -qh JOGGLEmax;
size= qh num_points * qh hull_dim;
for (i=size; i--; ) {
randr= qh_RANDOMint;
*(coordp++)= *(inputp++) + (randr * randa + randb);
}
if (qh DELAUNAY) {
qh last_low= qh last_high= qh last_newhigh= REALmax;
qh_setdelaunay(qh hull_dim, qh num_points, qh first_point);
}
} /* joggleinput */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="maxabsval">-</a>
qh_maxabsval( normal, dim )
return pointer to maximum absolute value of a dim vector
returns NULL if dim=0
*/
realT *qh_maxabsval(realT *normal, int dim) {
realT maxval= -REALmax;
realT *maxp= NULL, *colp, absval;
int k;
for (k=dim, colp= normal; k--; colp++) {
absval= fabs_(*colp);
if (absval > maxval) {
maxval= absval;
maxp= colp;
}
}
return maxp;
} /* maxabsval */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="maxmin">-</a>
qh_maxmin( points, numpoints, dimension )
return max/min points for each dimension
determine max and min coordinates
returns:
returns a temporary set of max and min points
may include duplicate points. Does not include qh.GOODpoint
sets qh.NEARzero, qh.MAXabs_coord, qh.MAXsumcoord, qh.MAXwidth
qh.MAXlastcoord, qh.MINlastcoord
initializes qh.max_outside, qh.min_vertex, qh.WAScoplanar, qh.ZEROall_ok
notes:
loop duplicated in qh_detjoggle()
design:
initialize global precision variables
checks definition of REAL...
for each dimension
for each point
collect maximum and minimum point
collect maximum of maximums and minimum of minimums
determine qh.NEARzero for Gaussian Elimination
*/
setT *qh_maxmin(pointT *points, int numpoints, int dimension) {
int k;
realT maxcoord, temp;
pointT *minimum, *maximum, *point, *pointtemp;
setT *set;
qh max_outside= 0.0;
qh MAXabs_coord= 0.0;
qh MAXwidth= -REALmax;
qh MAXsumcoord= 0.0;
qh min_vertex= 0.0;
qh WAScoplanar= False;
if (qh ZEROcentrum)
qh ZEROall_ok= True;
if (REALmin < REALepsilon && REALmin < REALmax && REALmin > -REALmax
&& REALmax > 0.0 && -REALmax < 0.0)
; /* all ok */
else {
qh_fprintf(qh ferr, 6011, "qhull error: floating point constants in user.h are wrong\n\
REALepsilon %g REALmin %g REALmax %g -REALmax %g\n",
REALepsilon, REALmin, REALmax, -REALmax);
qh_errexit(qh_ERRinput, NULL, NULL);
}
set= qh_settemp(2*dimension);
for (k=0; k < dimension; k++) {
if (points == qh GOODpointp)
minimum= maximum= points + dimension;
else
minimum= maximum= points;
FORALLpoint_(points, numpoints) {
if (point == qh GOODpointp)
continue;
if (maximum[k] < point[k])
maximum= point;
else if (minimum[k] > point[k])
minimum= point;
}
if (k == dimension-1) {
qh MINlastcoord= minimum[k];
qh MAXlastcoord= maximum[k];
}
if (qh SCALElast && k == dimension-1)
maxcoord= qh MAXwidth;
else {
maxcoord= fmax_(maximum[k], -minimum[k]);
if (qh GOODpointp) {
temp= fmax_(qh GOODpointp[k], -qh GOODpointp[k]);
maximize_(maxcoord, temp);
}
temp= maximum[k] - minimum[k];
maximize_(qh MAXwidth, temp);
}
maximize_(qh MAXabs_coord, maxcoord);
qh MAXsumcoord += maxcoord;
qh_setappend(&set, maximum);
qh_setappend(&set, minimum);
/* calculation of qh NEARzero is based on error formula 4.4-13 of
Golub & van Loan, authors say n^3 can be ignored and 10 be used in
place of rho */
qh NEARzero[k]= 80 * qh MAXsumcoord * REALepsilon;
}
if (qh IStracing >=1)
qh_printpoints(qh ferr, "qh_maxmin: found the max and min points(by dim):", set);
return(set);
} /* maxmin */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="maxouter">-</a>
qh_maxouter()
return maximum distance from facet to outer plane
normally this is qh.max_outside+qh.DISTround
does not include qh.JOGGLEmax
see:
qh_outerinner()
notes:
need to add another qh.DISTround if testing actual point with computation
for joggle:
qh_setfacetplane() updated qh.max_outer for Wnewvertexmax (max distance to vertex)
need to use Wnewvertexmax since could have a coplanar point for a high
facet that is replaced by a low facet
need to add qh.JOGGLEmax if testing input points
*/
realT qh_maxouter(void) {
realT dist;
dist= fmax_(qh max_outside, qh DISTround);
dist += qh DISTround;
trace4((qh ferr, 4012, "qh_maxouter: max distance from facet to outer plane is %2.2g max_outside is %2.2g\n", dist, qh max_outside));
return dist;
} /* maxouter */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="maxsimplex">-</a>
qh_maxsimplex( dim, maxpoints, points, numpoints, simplex )
determines maximum simplex for a set of points
starts from points already in simplex
skips qh.GOODpointp (assumes that it isn't in maxpoints)
returns:
simplex with dim+1 points
notes:
assumes at least pointsneeded points in points
maximizes determinate for x,y,z,w, etc.
uses maxpoints as long as determinate is clearly non-zero
design:
initialize simplex with at least two points
(find points with max or min x coordinate)
for each remaining dimension
add point that maximizes the determinate
(use points from maxpoints first)
*/
void qh_maxsimplex(int dim, setT *maxpoints, pointT *points, int numpoints, setT **simplex) {
pointT *point, **pointp, *pointtemp, *maxpoint, *minx=NULL, *maxx=NULL;
boolT nearzero, maxnearzero= False;
int k, sizinit;
realT maxdet= -REALmax, det, mincoord= REALmax, maxcoord= -REALmax;
sizinit= qh_setsize(*simplex);
if (sizinit < 2) {
if (qh_setsize(maxpoints) >= 2) {
FOREACHpoint_(maxpoints) {
if (maxcoord < point[0]) {
maxcoord= point[0];
maxx= point;
}
if (mincoord > point[0]) {
mincoord= point[0];
minx= point;
}
}
}else {
FORALLpoint_(points, numpoints) {
if (point == qh GOODpointp)
continue;
if (maxcoord < point[0]) {
maxcoord= point[0];
maxx= point;
}
if (mincoord > point[0]) {
mincoord= point[0];
minx= point;
}
}
}
qh_setunique(simplex, minx);
if (qh_setsize(*simplex) < 2)
qh_setunique(simplex, maxx);
sizinit= qh_setsize(*simplex);
if (sizinit < 2) {
qh_precision("input has same x coordinate");
if (zzval_(Zsetplane) > qh hull_dim+1) {
qh_fprintf(qh ferr, 6012, "qhull precision error (qh_maxsimplex for voronoi_center):\n%d points with the same x coordinate.\n",
qh_setsize(maxpoints)+numpoints);
qh_errexit(qh_ERRprec, NULL, NULL);
}else {
qh_fprintf(qh ferr, 6013, "qhull input error: input is less than %d-dimensional since it has the same x coordinate\n", qh hull_dim);
qh_errexit(qh_ERRinput, NULL, NULL);
}
}
}
for (k=sizinit; k < dim+1; k++) {
maxpoint= NULL;
maxdet= -REALmax;
FOREACHpoint_(maxpoints) {
if (!qh_setin(*simplex, point)) {
det= qh_detsimplex(point, *simplex, k, &nearzero);
if ((det= fabs_(det)) > maxdet) {
maxdet= det;
maxpoint= point;
maxnearzero= nearzero;
}
}
}
if (!maxpoint || maxnearzero) {
zinc_(Zsearchpoints);
if (!maxpoint) {
trace0((qh ferr, 7, "qh_maxsimplex: searching all points for %d-th initial vertex.\n", k+1));
}else {
trace0((qh ferr, 8, "qh_maxsimplex: searching all points for %d-th initial vertex, better than p%d det %2.2g\n",
k+1, qh_pointid(maxpoint), maxdet));
}
FORALLpoint_(points, numpoints) {
if (point == qh GOODpointp)
continue;
if (!qh_setin(*simplex, point)) {
det= qh_detsimplex(point, *simplex, k, &nearzero);
if ((det= fabs_(det)) > maxdet) {
maxdet= det;
maxpoint= point;
maxnearzero= nearzero;
}
}
}
} /* !maxpoint */
if (!maxpoint) {
qh_fprintf(qh ferr, 6014, "qhull internal error (qh_maxsimplex): not enough points available\n");
qh_errexit(qh_ERRqhull, NULL, NULL);
}
qh_setappend(simplex, maxpoint);
trace1((qh ferr, 1002, "qh_maxsimplex: selected point p%d for %d`th initial vertex, det=%2.2g\n",
qh_pointid(maxpoint), k+1, maxdet));
} /* k */
} /* maxsimplex */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="minabsval">-</a>
qh_minabsval( normal, dim )
return minimum absolute value of a dim vector
*/
realT qh_minabsval(realT *normal, int dim) {
realT minval= 0;
realT maxval= 0;
realT *colp;
int k;
for (k=dim, colp=normal; k--; colp++) {
maximize_(maxval, *colp);
minimize_(minval, *colp);
}
return fmax_(maxval, -minval);
} /* minabsval */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="mindiff">-</a>
qh_mindif ( vecA, vecB, dim )
return index of min abs. difference of two vectors
*/
int qh_mindiff(realT *vecA, realT *vecB, int dim) {
realT mindiff= REALmax, diff;
realT *vecAp= vecA, *vecBp= vecB;
int k, mink= 0;
for (k=0; k < dim; k++) {
diff= *vecAp++ - *vecBp++;
diff= fabs_(diff);
if (diff < mindiff) {
mindiff= diff;
mink= k;
}
}
return mink;
} /* mindiff */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="orientoutside">-</a>
qh_orientoutside( facet )
make facet outside oriented via qh.interior_point
returns:
True if facet reversed orientation.
*/
boolT qh_orientoutside(facetT *facet) {
int k;
realT dist;
qh_distplane(qh interior_point, facet, &dist);
if (dist > 0) {
for (k=qh hull_dim; k--; )
facet->normal[k]= -facet->normal[k];
facet->offset= -facet->offset;
return True;
}
return False;
} /* orientoutside */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="outerinner">-</a>
qh_outerinner( facet, outerplane, innerplane )
if facet and qh.maxoutdone (i.e., qh_check_maxout)
returns outer and inner plane for facet
else
returns maximum outer and inner plane
accounts for qh.JOGGLEmax
see:
qh_maxouter(), qh_check_bestdist(), qh_check_points()
notes:
outerplaner or innerplane may be NULL
facet is const
Does not error (QhullFacet)
includes qh.DISTround for actual points
adds another qh.DISTround if testing with floating point arithmetic
*/
void qh_outerinner(facetT *facet, realT *outerplane, realT *innerplane) {
realT dist, mindist;
vertexT *vertex, **vertexp;
if (outerplane) {
if (!qh_MAXoutside || !facet || !qh maxoutdone) {
*outerplane= qh_maxouter(); /* includes qh.DISTround */
}else { /* qh_MAXoutside ... */
#if qh_MAXoutside
*outerplane= facet->maxoutside + qh DISTround;
#endif
}
if (qh JOGGLEmax < REALmax/2)
*outerplane += qh JOGGLEmax * sqrt((realT)qh hull_dim);
}
if (innerplane) {
if (facet) {
mindist= REALmax;
FOREACHvertex_(facet->vertices) {
zinc_(Zdistio);
qh_distplane(vertex->point, facet, &dist);
minimize_(mindist, dist);
}
*innerplane= mindist - qh DISTround;
}else
*innerplane= qh min_vertex - qh DISTround;
if (qh JOGGLEmax < REALmax/2)
*innerplane -= qh JOGGLEmax * sqrt((realT)qh hull_dim);
}
} /* outerinner */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="pointdist">-</a>
qh_pointdist( point1, point2, dim )
return distance between two points
notes:
returns distance squared if 'dim' is negative
*/
coordT qh_pointdist(pointT *point1, pointT *point2, int dim) {
coordT dist, diff;
int k;
dist= 0.0;
for (k= (dim > 0 ? dim : -dim); k--; ) {
diff= *point1++ - *point2++;
dist += diff * diff;
}
if (dim > 0)
return(sqrt(dist));
return dist;
} /* pointdist */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="printmatrix">-</a>
qh_printmatrix( fp, string, rows, numrow, numcol )
print matrix to fp given by row vectors
print string as header
notes:
print a vector by qh_printmatrix(fp, "", &vect, 1, len)
*/
void qh_printmatrix(FILE *fp, const char *string, realT **rows, int numrow, int numcol) {
realT *rowp;
realT r; /*bug fix*/
int i,k;
qh_fprintf(fp, 9001, "%s\n", string);
for (i=0; i < numrow; i++) {
rowp= rows[i];
for (k=0; k < numcol; k++) {
r= *rowp++;
qh_fprintf(fp, 9002, "%6.3g ", r);
}
qh_fprintf(fp, 9003, "\n");
}
} /* printmatrix */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="printpoints">-</a>
qh_printpoints( fp, string, points )
print pointids to fp for a set of points
if string, prints string and 'p' point ids
*/
void qh_printpoints(FILE *fp, const char *string, setT *points) {
pointT *point, **pointp;
if (string) {
qh_fprintf(fp, 9004, "%s", string);
FOREACHpoint_(points)
qh_fprintf(fp, 9005, " p%d", qh_pointid(point));
qh_fprintf(fp, 9006, "\n");
}else {
FOREACHpoint_(points)
qh_fprintf(fp, 9007, " %d", qh_pointid(point));
qh_fprintf(fp, 9008, "\n");
}
} /* printpoints */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="projectinput">-</a>
qh_projectinput()
project input points using qh.lower_bound/upper_bound and qh DELAUNAY
if qh.lower_bound[k]=qh.upper_bound[k]= 0,
removes dimension k
if halfspace intersection
removes dimension k from qh.feasible_point
input points in qh first_point, num_points, input_dim
returns:
new point array in qh first_point of qh hull_dim coordinates
sets qh POINTSmalloc
if qh DELAUNAY
projects points to paraboloid
lowbound/highbound is also projected
if qh ATinfinity
adds point "at-infinity"
if qh POINTSmalloc
frees old point array
notes:
checks that qh.hull_dim agrees with qh.input_dim, PROJECTinput, and DELAUNAY
design:
sets project[k] to -1 (delete), 0 (keep), 1 (add for Delaunay)
determines newdim and newnum for qh hull_dim and qh num_points
projects points to newpoints
projects qh.lower_bound to itself
projects qh.upper_bound to itself
if qh DELAUNAY
if qh ATINFINITY
projects points to paraboloid
computes "infinity" point as vertex average and 10% above all points
else
uses qh_setdelaunay to project points to paraboloid
*/
void qh_projectinput(void) {
int k,i;
int newdim= qh input_dim, newnum= qh num_points;
signed char *project;
int size= (qh input_dim+1)*sizeof(*project);
pointT *newpoints, *coord, *infinity;
realT paraboloid, maxboloid= 0;
project= (signed char*)qh_memalloc(size);
memset((char*)project, 0, (size_t)size);
for (k=0; k < qh input_dim; k++) { /* skip Delaunay bound */
if (qh lower_bound[k] == 0 && qh upper_bound[k] == 0) {
project[k]= -1;
newdim--;
}
}
if (qh DELAUNAY) {
project[k]= 1;
newdim++;
if (qh ATinfinity)
newnum++;
}
if (newdim != qh hull_dim) {
qh_fprintf(qh ferr, 6015, "qhull internal error (qh_projectinput): dimension after projection %d != hull_dim %d\n", newdim, qh hull_dim);
qh_errexit(qh_ERRqhull, NULL, NULL);
}
if (!(newpoints=(coordT*)qh_malloc(newnum*newdim*sizeof(coordT)))){
qh_fprintf(qh ferr, 6016, "qhull error: insufficient memory to project %d points\n",
qh num_points);
qh_errexit(qh_ERRmem, NULL, NULL);
}
qh_projectpoints(project, qh input_dim+1, qh first_point,
qh num_points, qh input_dim, newpoints, newdim);
trace1((qh ferr, 1003, "qh_projectinput: updating lower and upper_bound\n"));
qh_projectpoints(project, qh input_dim+1, qh lower_bound,
1, qh input_dim+1, qh lower_bound, newdim+1);
qh_projectpoints(project, qh input_dim+1, qh upper_bound,
1, qh input_dim+1, qh upper_bound, newdim+1);
if (qh HALFspace) {
if (!qh feasible_point) {
qh_fprintf(qh ferr, 6017, "qhull internal error (qh_projectinput): HALFspace defined without qh.feasible_point\n");
qh_errexit(qh_ERRqhull, NULL, NULL);
}
qh_projectpoints(project, qh input_dim, qh feasible_point,
1, qh input_dim, qh feasible_point, newdim);
}
qh_memfree(project, (qh input_dim+1)*sizeof(*project));
if (qh POINTSmalloc)
qh_free(qh first_point);
qh first_point= newpoints;
qh POINTSmalloc= True;
if (qh DELAUNAY && qh ATinfinity) {
coord= qh first_point;
infinity= qh first_point + qh hull_dim * qh num_points;
for (k=qh hull_dim-1; k--; )
infinity[k]= 0.0;
for (i=qh num_points; i--; ) {
paraboloid= 0.0;
for (k=0; k < qh hull_dim-1; k++) {
paraboloid += *coord * *coord;
infinity[k] += *coord;
coord++;
}
*(coord++)= paraboloid;
maximize_(maxboloid, paraboloid);
}
/* coord == infinity */
for (k=qh hull_dim-1; k--; )
*(coord++) /= qh num_points;
*(coord++)= maxboloid * 1.1;
qh num_points++;
trace0((qh ferr, 9, "qh_projectinput: projected points to paraboloid for Delaunay\n"));
}else if (qh DELAUNAY) /* !qh ATinfinity */
qh_setdelaunay( qh hull_dim, qh num_points, qh first_point);
} /* projectinput */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="projectpoints">-</a>
qh_projectpoints( project, n, points, numpoints, dim, newpoints, newdim )
project points/numpoints/dim to newpoints/newdim
if project[k] == -1
delete dimension k
if project[k] == 1
add dimension k by duplicating previous column
n is size of project
notes:
newpoints may be points if only adding dimension at end
design:
check that 'project' and 'newdim' agree
for each dimension
if project == -1
skip dimension
else
determine start of column in newpoints
determine start of column in points
if project == +1, duplicate previous column
copy dimension (column) from points to newpoints
*/
void qh_projectpoints(signed char *project, int n, realT *points,
int numpoints, int dim, realT *newpoints, int newdim) {
int testdim= dim, oldk=0, newk=0, i,j=0,k;
realT *newp, *oldp;
for (k=0; k < n; k++)
testdim += project[k];
if (testdim != newdim) {
qh_fprintf(qh ferr, 6018, "qhull internal error (qh_projectpoints): newdim %d should be %d after projection\n",
newdim, testdim);
qh_errexit(qh_ERRqhull, NULL, NULL);
}
for (j=0; j<n; j++) {
if (project[j] == -1)
oldk++;
else {
newp= newpoints+newk++;
if (project[j] == +1) {
if (oldk >= dim)
continue;
oldp= points+oldk;
}else
oldp= points+oldk++;
for (i=numpoints; i--; ) {
*newp= *oldp;
newp += newdim;
oldp += dim;
}
}
if (oldk >= dim)
break;
}
trace1((qh ferr, 1004, "qh_projectpoints: projected %d points from dim %d to dim %d\n",
numpoints, dim, newdim));
} /* projectpoints */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="rotateinput">-</a>
qh_rotateinput( rows )
rotate input using row matrix
input points given by qh first_point, num_points, hull_dim
assumes rows[dim] is a scratch buffer
if qh POINTSmalloc, overwrites input points, else mallocs a new array
returns:
rotated input
sets qh POINTSmalloc
design:
see qh_rotatepoints
*/
void qh_rotateinput(realT **rows) {
if (!qh POINTSmalloc) {
qh first_point= qh_copypoints(qh first_point, qh num_points, qh hull_dim);
qh POINTSmalloc= True;
}
qh_rotatepoints(qh first_point, qh num_points, qh hull_dim, rows);
} /* rotateinput */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="rotatepoints">-</a>
qh_rotatepoints( points, numpoints, dim, row )
rotate numpoints points by a d-dim row matrix
assumes rows[dim] is a scratch buffer
returns:
rotated points in place
design:
for each point
for each coordinate
use row[dim] to compute partial inner product
for each coordinate
rotate by partial inner product
*/
void qh_rotatepoints(realT *points, int numpoints, int dim, realT **row) {
realT *point, *rowi, *coord= NULL, sum, *newval;
int i,j,k;
if (qh IStracing >= 1)
qh_printmatrix(qh ferr, "qh_rotatepoints: rotate points by", row, dim, dim);
for (point= points, j= numpoints; j--; point += dim) {
newval= row[dim];
for (i=0; i < dim; i++) {
rowi= row[i];
coord= point;
for (sum= 0.0, k= dim; k--; )
sum += *rowi++ * *coord++;
*(newval++)= sum;
}
for (k=dim; k--; )
*(--coord)= *(--newval);
}
} /* rotatepoints */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="scaleinput">-</a>
qh_scaleinput()
scale input points using qh low_bound/high_bound
input points given by qh first_point, num_points, hull_dim
if qh POINTSmalloc, overwrites input points, else mallocs a new array
returns:
scales coordinates of points to low_bound[k], high_bound[k]
sets qh POINTSmalloc
design:
see qh_scalepoints
*/
void qh_scaleinput(void) {
if (!qh POINTSmalloc) {
qh first_point= qh_copypoints(qh first_point, qh num_points, qh hull_dim);
qh POINTSmalloc= True;
}
qh_scalepoints(qh first_point, qh num_points, qh hull_dim,
qh lower_bound, qh upper_bound);
} /* scaleinput */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="scalelast">-</a>
qh_scalelast( points, numpoints, dim, low, high, newhigh )
scale last coordinate to [0,m] for Delaunay triangulations
input points given by points, numpoints, dim
returns:
changes scale of last coordinate from [low, high] to [0, newhigh]
overwrites last coordinate of each point
saves low/high/newhigh in qh.last_low, etc. for qh_setdelaunay()
notes:
when called by qh_setdelaunay, low/high may not match actual data
design:
compute scale and shift factors
apply to last coordinate of each point
*/
void qh_scalelast(coordT *points, int numpoints, int dim, coordT low,
coordT high, coordT newhigh) {
realT scale, shift;
coordT *coord;
int i;
boolT nearzero= False;
trace4((qh ferr, 4013, "qh_scalelast: scale last coordinate from [%2.2g, %2.2g] to [0,%2.2g]\n",
low, high, newhigh));
qh last_low= low;
qh last_high= high;
qh last_newhigh= newhigh;
scale= qh_divzero(newhigh, high - low,
qh MINdenom_1, &nearzero);
if (nearzero) {
if (qh DELAUNAY)
qh_fprintf(qh ferr, 6019, "qhull input error: can not scale last coordinate. Input is cocircular\n or cospherical. Use option 'Qz' to add a point at infinity.\n");
else
qh_fprintf(qh ferr, 6020, "qhull input error: can not scale last coordinate. New bounds [0, %2.2g] are too wide for\nexisting bounds [%2.2g, %2.2g] (width %2.2g)\n",
newhigh, low, high, high-low);
qh_errexit(qh_ERRinput, NULL, NULL);
}
shift= - low * newhigh / (high-low);
coord= points + dim - 1;
for (i=numpoints; i--; coord += dim)
*coord= *coord * scale + shift;
} /* scalelast */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="scalepoints">-</a>
qh_scalepoints( points, numpoints, dim, newlows, newhighs )
scale points to new lowbound and highbound
retains old bound when newlow= -REALmax or newhigh= +REALmax
returns:
scaled points
overwrites old points
design:
for each coordinate
compute current low and high bound
compute scale and shift factors
scale all points
enforce new low and high bound for all points
*/
void qh_scalepoints(pointT *points, int numpoints, int dim,
realT *newlows, realT *newhighs) {
int i,k;
realT shift, scale, *coord, low, high, newlow, newhigh, mincoord, maxcoord;
boolT nearzero= False;
for (k=0; k < dim; k++) {
newhigh= newhighs[k];
newlow= newlows[k];
if (newhigh > REALmax/2 && newlow < -REALmax/2)
continue;
low= REALmax;
high= -REALmax;
for (i=numpoints, coord=points+k; i--; coord += dim) {
minimize_(low, *coord);
maximize_(high, *coord);
}
if (newhigh > REALmax/2)
newhigh= high;
if (newlow < -REALmax/2)
newlow= low;
if (qh DELAUNAY && k == dim-1 && newhigh < newlow) {
qh_fprintf(qh ferr, 6021, "qhull input error: 'Qb%d' or 'QB%d' inverts paraboloid since high bound %.2g < low bound %.2g\n",
k, k, newhigh, newlow);
qh_errexit(qh_ERRinput, NULL, NULL);
}
scale= qh_divzero(newhigh - newlow, high - low,
qh MINdenom_1, &nearzero);
if (nearzero) {
qh_fprintf(qh ferr, 6022, "qhull input error: %d'th dimension's new bounds [%2.2g, %2.2g] too wide for\nexisting bounds [%2.2g, %2.2g]\n",
k, newlow, newhigh, low, high);
qh_errexit(qh_ERRinput, NULL, NULL);
}
shift= (newlow * high - low * newhigh)/(high-low);
coord= points+k;
for (i=numpoints; i--; coord += dim)
*coord= *coord * scale + shift;
coord= points+k;
if (newlow < newhigh) {
mincoord= newlow;
maxcoord= newhigh;
}else {
mincoord= newhigh;
maxcoord= newlow;
}
for (i=numpoints; i--; coord += dim) {
minimize_(*coord, maxcoord); /* because of roundoff error */
maximize_(*coord, mincoord);
}
trace0((qh ferr, 10, "qh_scalepoints: scaled %d'th coordinate [%2.2g, %2.2g] to [%.2g, %.2g] for %d points by %2.2g and shifted %2.2g\n",
k, low, high, newlow, newhigh, numpoints, scale, shift));
}
} /* scalepoints */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="setdelaunay">-</a>
qh_setdelaunay( dim, count, points )
project count points to dim-d paraboloid for Delaunay triangulation
dim is one more than the dimension of the input set
assumes dim is at least 3 (i.e., at least a 2-d Delaunay triangulation)
points is a dim*count realT array. The first dim-1 coordinates
are the coordinates of the first input point. array[dim] is
the first coordinate of the second input point. array[2*dim] is
the first coordinate of the third input point.
if qh.last_low defined (i.e., 'Qbb' called qh_scalelast)
calls qh_scalelast to scale the last coordinate the same as the other points
returns:
for each point
sets point[dim-1] to sum of squares of coordinates
scale points to 'Qbb' if needed
notes:
to project one point, use
qh_setdelaunay(qh hull_dim, 1, point)
Do not use options 'Qbk', 'QBk', or 'QbB' since they scale
the coordinates after the original projection.
*/
void qh_setdelaunay(int dim, int count, pointT *points) {
int i, k;
coordT *coordp, coord;
realT paraboloid;
trace0((qh ferr, 11, "qh_setdelaunay: project %d points to paraboloid for Delaunay triangulation\n", count));
coordp= points;
for (i=0; i < count; i++) {
coord= *coordp++;
paraboloid= coord*coord;
for (k=dim-2; k--; ) {
coord= *coordp++;
paraboloid += coord*coord;
}
*coordp++ = paraboloid;
}
if (qh last_low < REALmax/2)
qh_scalelast(points, count, dim, qh last_low, qh last_high, qh last_newhigh);
} /* setdelaunay */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="sethalfspace">-</a>
qh_sethalfspace( dim, coords, nextp, normal, offset, feasible )
set point to dual of halfspace relative to feasible point
halfspace is normal coefficients and offset.
returns:
false if feasible point is outside of hull (error message already reported)
overwrites coordinates for point at dim coords
nextp= next point (coords)
design:
compute distance from feasible point to halfspace
divide each normal coefficient by -dist
*/
boolT qh_sethalfspace(int dim, coordT *coords, coordT **nextp,
coordT *normal, coordT *offset, coordT *feasible) {
coordT *normp= normal, *feasiblep= feasible, *coordp= coords;
realT dist;
realT r; /*bug fix*/
int k;
boolT zerodiv;
dist= *offset;
for (k=dim; k--; )
dist += *(normp++) * *(feasiblep++);
if (dist > 0)
goto LABELerroroutside;
normp= normal;
if (dist < -qh MINdenom) {
for (k=dim; k--; )
*(coordp++)= *(normp++) / -dist;
}else {
for (k=dim; k--; ) {
*(coordp++)= qh_divzero(*(normp++), -dist, qh MINdenom_1, &zerodiv);
if (zerodiv)
goto LABELerroroutside;
}
}
*nextp= coordp;
if (qh IStracing >= 4) {
qh_fprintf(qh ferr, 8021, "qh_sethalfspace: halfspace at offset %6.2g to point: ", *offset);
for (k=dim, coordp=coords; k--; ) {
r= *coordp++;
qh_fprintf(qh ferr, 8022, " %6.2g", r);
}
qh_fprintf(qh ferr, 8023, "\n");
}
return True;
LABELerroroutside:
feasiblep= feasible;
normp= normal;
qh_fprintf(qh ferr, 6023, "qhull input error: feasible point is not clearly inside halfspace\nfeasible point: ");
for (k=dim; k--; )
qh_fprintf(qh ferr, 8024, qh_REAL_1, r=*(feasiblep++));
qh_fprintf(qh ferr, 8025, "\n halfspace: ");
for (k=dim; k--; )
qh_fprintf(qh ferr, 8026, qh_REAL_1, r=*(normp++));
qh_fprintf(qh ferr, 8027, "\n at offset: ");
qh_fprintf(qh ferr, 8028, qh_REAL_1, *offset);
qh_fprintf(qh ferr, 8029, " and distance: ");
qh_fprintf(qh ferr, 8030, qh_REAL_1, dist);
qh_fprintf(qh ferr, 8031, "\n");
return False;
} /* sethalfspace */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="sethalfspace_all">-</a>
qh_sethalfspace_all( dim, count, halfspaces, feasible )
generate dual for halfspace intersection with feasible point
array of count halfspaces
each halfspace is normal coefficients followed by offset
the origin is inside the halfspace if the offset is negative
returns:
malloc'd array of count X dim-1 points
notes:
call before qh_init_B or qh_initqhull_globals
unused/untested code: please email bradb@shore.net if this works ok for you
If using option 'Fp', also set qh feasible_point. It is a malloc'd array
that is freed by qh_freebuffers.
design:
see qh_sethalfspace
*/
coordT *qh_sethalfspace_all(int dim, int count, coordT *halfspaces, pointT *feasible) {
int i, newdim;
pointT *newpoints;
coordT *coordp, *normalp, *offsetp;
trace0((qh ferr, 12, "qh_sethalfspace_all: compute dual for halfspace intersection\n"));
newdim= dim - 1;
if (!(newpoints=(coordT*)qh_malloc(count*newdim*sizeof(coordT)))){
qh_fprintf(qh ferr, 6024, "qhull error: insufficient memory to compute dual of %d halfspaces\n",
count);
qh_errexit(qh_ERRmem, NULL, NULL);
}
coordp= newpoints;
normalp= halfspaces;
for (i=0; i < count; i++) {
offsetp= normalp + newdim;
if (!qh_sethalfspace(newdim, coordp, &coordp, normalp, offsetp, feasible)) {
qh_fprintf(qh ferr, 8032, "The halfspace was at index %d\n", i);
qh_errexit(qh_ERRinput, NULL, NULL);
}
normalp= offsetp + 1;
}
return newpoints;
} /* sethalfspace_all */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="sharpnewfacets">-</a>
qh_sharpnewfacets()
returns:
true if could be an acute angle (facets in different quadrants)
notes:
for qh_findbest
design:
for all facets on qh.newfacet_list
if two facets are in different quadrants
set issharp
*/
boolT qh_sharpnewfacets() {
facetT *facet;
boolT issharp = False;
int *quadrant, k;
quadrant= (int*)qh_memalloc(qh hull_dim * sizeof(int));
FORALLfacet_(qh newfacet_list) {
if (facet == qh newfacet_list) {
for (k=qh hull_dim; k--; )
quadrant[ k]= (facet->normal[ k] > 0);
}else {
for (k=qh hull_dim; k--; ) {
if (quadrant[ k] != (facet->normal[ k] > 0)) {
issharp= True;
break;
}
}
}
if (issharp)
break;
}
qh_memfree( quadrant, qh hull_dim * sizeof(int));
trace3((qh ferr, 3001, "qh_sharpnewfacets: %d\n", issharp));
return issharp;
} /* sharpnewfacets */
/*-<a href="qh-geom.htm#TOC"
>-------------------------------</a><a name="voronoi_center">-</a>
qh_voronoi_center( dim, points )
return Voronoi center for a set of points
dim is the orginal dimension of the points
gh.gm_matrix/qh.gm_row are scratch buffers
returns:
center as a temporary point
if non-simplicial,
returns center for max simplex of points
notes:
from Bowyer & Woodwark, A Programmer's Geometry, 1983, p. 65
design:
if non-simplicial
determine max simplex for points
translate point0 of simplex to origin
compute sum of squares of diagonal
compute determinate
compute Voronoi center (see Bowyer & Woodwark)
*/
pointT *qh_voronoi_center(int dim, setT *points) {
pointT *point, **pointp, *point0;
pointT *center= (pointT*)qh_memalloc(qh center_size);
setT *simplex;
int i, j, k, size= qh_setsize(points);
coordT *gmcoord;
realT *diffp, sum2, *sum2row, *sum2p, det, factor;
boolT nearzero, infinite;
if (size == dim+1)
simplex= points;
else if (size < dim+1) {
qh_fprintf(qh ferr, 6025, "qhull internal error (qh_voronoi_center):\n need at least %d points to construct a Voronoi center\n",
dim+1);
qh_errexit(qh_ERRqhull, NULL, NULL);
simplex= points; /* never executed -- avoids warning */
}else {
simplex= qh_settemp(dim+1);
qh_maxsimplex(dim, points, NULL, 0, &simplex);
}
point0= SETfirstt_(simplex, pointT);
gmcoord= qh gm_matrix;
for (k=0; k < dim; k++) {
qh gm_row[k]= gmcoord;
FOREACHpoint_(simplex) {
if (point != point0)
*(gmcoord++)= point[k] - point0[k];
}
}
sum2row= gmcoord;
for (i=0; i < dim; i++) {
sum2= 0.0;
for (k=0; k < dim; k++) {
diffp= qh gm_row[k] + i;
sum2 += *diffp * *diffp;
}
*(gmcoord++)= sum2;
}
det= qh_determinant(qh gm_row, dim, &nearzero);
factor= qh_divzero(0.5, det, qh MINdenom, &infinite);
if (infinite) {
for (k=dim; k--; )
center[k]= qh_INFINITE;
if (qh IStracing)
qh_printpoints(qh ferr, "qh_voronoi_center: at infinity for ", simplex);
}else {
for (i=0; i < dim; i++) {
gmcoord= qh gm_matrix;
sum2p= sum2row;
for (k=0; k < dim; k++) {
qh gm_row[k]= gmcoord;
if (k == i) {
for (j=dim; j--; )
*(gmcoord++)= *sum2p++;
}else {
FOREACHpoint_(simplex) {
if (point != point0)
*(gmcoord++)= point[k] - point0[k];
}
}
}
center[i]= qh_determinant(qh gm_row, dim, &nearzero)*factor + point0[i];
}
#ifndef qh_NOtrace
if (qh IStracing >= 3) {
qh_fprintf(qh ferr, 8033, "qh_voronoi_center: det %2.2g factor %2.2g ", det, factor);
qh_printmatrix(qh ferr, "center:", ¢er, 1, dim);
if (qh IStracing >= 5) {
qh_printpoints(qh ferr, "points", simplex);
FOREACHpoint_(simplex)
qh_fprintf(qh ferr, 8034, "p%d dist %.2g, ", qh_pointid(point),
qh_pointdist(point, center, dim));
qh_fprintf(qh ferr, 8035, "\n");
}
}
#endif
}
if (simplex != points)
qh_settempfree(&simplex);
return center;
} /* voronoi_center */
|