File: add_newdocs.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (2741 lines) | stat: -rwxr-xr-x 56,683 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
# Docstrings for generated ufuncs
#
# The syntax is designed to look like the function add_newdoc is being
# called from numpy.lib, but in this file add_newdoc puts the
# docstrings in a dictionary. This dictionary is used in
# generate_ufuncs.py to generate the docstrings for the ufuncs in
# scipy.special at the C level when the ufuncs are created at compile
# time.

from __future__ import division, print_function, absolute_import

docdict = {}


def get(name):
    return docdict.get(name)


def add_newdoc(place, name, doc):
    docdict['.'.join((place, name))] = doc


add_newdoc("scipy.special", "_lambertw",
    """
    Internal function, use `lambertw` instead.
    """)

add_newdoc("scipy.special", "airy",
    """
    airy(z)

    Airy functions and their derivatives.

    Parameters
    ----------
    z : float or complex
        Argument.

    Returns
    -------
    Ai, Aip, Bi, Bip
        Airy functions Ai and Bi, and their derivatives Aip and Bip

    Notes
    -----
    The Airy functions Ai and Bi are two independent solutions of y''(x) = x y.

    """)

add_newdoc("scipy.special", "airye",
    """
    airye(z)

    Exponentially scaled Airy functions and their derivatives.

    Scaling::

        eAi  = Ai  * exp(2.0/3.0*z*sqrt(z))
        eAip = Aip * exp(2.0/3.0*z*sqrt(z))
        eBi  = Bi  * exp(-abs((2.0/3.0*z*sqrt(z)).real))
        eBip = Bip * exp(-abs((2.0/3.0*z*sqrt(z)).real))

    Parameters
    ----------
    z : float or complex
        Argument.

    Returns
    -------
    eAi, eAip, eBi, eBip
        Airy functions Ai and Bi, and their derivatives Aip and Bip

    """)

add_newdoc("scipy.special", "bdtr",
    """
    bdtr(k, n, p)

    Binomial distribution cumulative distribution function.

    Sum of the terms 0 through k of the Binomial probability density.

    ::

        y = sum(nCj p**j (1-p)**(n-j),j=0..k)

    Parameters
    ----------
    k, n : int
        Terms to include
    p : float
        Probability

    Returns
    -------
    y : float
        Sum of terms

    """)

add_newdoc("scipy.special", "bdtrc",
    """
    bdtrc(k, n, p)

    Binomial distribution survival function.

    Sum of the terms k+1 through n of the Binomial probability density

    ::

        y = sum(nCj p**j (1-p)**(n-j), j=k+1..n)

    Parameters
    ----------
    k, n : int
        Terms to include
    p : float
        Probability

    Returns
    -------
    y : float
        Sum of terms

    """)

add_newdoc("scipy.special", "bdtri",
    """
    bdtri(k, n, y)

    Inverse function to bdtr vs. p

    Finds probability `p` such that for the cumulative binomial
    probability ``bdtr(k, n, p) == y``.
    """)

add_newdoc("scipy.special", "bdtrik",
    """
    bdtrik(y, n, p)

    Inverse function to bdtr vs k
    """)

add_newdoc("scipy.special", "bdtrin",
    """
    bdtrin(k, y, p)

    Inverse function to bdtr vs n
    """)

add_newdoc("scipy.special", "binom",
    """
    binom(n, k)

    Binomial coefficient
    """)

add_newdoc("scipy.special", "btdtria",
    """
    btdtria(p, b, x)

    Inverse of btdtr vs a

    """)

add_newdoc("scipy.special", "btdtrib",
    """
    btdtria(a, p, x)

    Inverse of btdtr vs b

    """)

add_newdoc("scipy.special", "bei",
    """
    bei(x)

    Kelvin function bei
    """)

add_newdoc("scipy.special", "beip",
    """
    beip(x)

    Derivative of the Kelvin function bei
    """)

add_newdoc("scipy.special", "ber",
    """
    ber(x)

    Kelvin function ber.
    """)

add_newdoc("scipy.special", "berp",
    """
    berp(x)

    Derivative of the Kelvin function ber
    """)

add_newdoc("scipy.special", "besselpoly",
    r"""
    besselpoly(a, lmb, nu)

    Weighed integral of a Bessel function.

    .. math::

       \int_0^1 x^\lambda J_v(\nu, 2 a x) \, dx

    where :math:`J_v` is a Bessel function and :math:`\lambda=lmb`,
    :math:`\nu=nu`.

    """)

add_newdoc("scipy.special", "beta",
    """
    beta(a, b)

    Beta function.

    ::

        beta(a,b) =  gamma(a) * gamma(b) / gamma(a+b)
    """)

add_newdoc("scipy.special", "betainc",
    """
    betainc(a, b, x)

    Incomplete beta integral.

    Compute the incomplete beta integral of the arguments, evaluated
    from zero to x::

        gamma(a+b) / (gamma(a)*gamma(b)) * integral(t**(a-1) (1-t)**(b-1), t=0..x).

    Notes
    -----
    The incomplete beta is also sometimes defined without the terms
    in gamma, in which case the above definition is the so-called regularized
    incomplete beta. Under this definition, you can get the incomplete beta by
    multiplying the result of the scipy function by beta(a, b).

    """)

add_newdoc("scipy.special", "betaincinv",
    """
    betaincinv(a, b, y)

    Inverse function to beta integral.

    Compute x such that betainc(a,b,x) = y.
    """)

add_newdoc("scipy.special", "betaln",
    """
    betaln(a, b)

    Natural logarithm of absolute value of beta function.

    Computes ``ln(abs(beta(x)))``.
    """)

add_newdoc("scipy.special", "boxcox",
    """
    boxcox(x, lmbda)

    Compute the Box-Cox transformation.

    The Box-Cox transformation is::

        y = (x**lmbda - 1) / lmbda  if lmbda != 0
            log(x)                  if lmbda == 0

    Returns `nan` if ``x < 0``.
    Returns `-inf` if ``x == 0`` and ``lmbda < 0``.

    .. versionadded:: 0.14.0

    Parameters
    ----------
    x : array_like
        Data to be transformed.
    lmbda : array_like
        Power parameter of the Box-Cox transform.

    Returns
    -------
    y : array
        Transformed data.

    Examples
    --------
    >>> boxcox([1, 4, 10], 2.5)
    array([   0.        ,   12.4       ,  126.09110641])
    >>> boxcox(2, [0, 1, 2])
    array([ 0.69314718,  1.        ,  1.5       ])
    """)

add_newdoc("scipy.special", "boxcox1p",
    """
    boxcox1p(x, lmbda)

    Compute the Box-Cox transformation of 1 + `x`.

    The Box-Cox transformation computed by `boxcox1p` is::

        y = ((1+x)**lmbda - 1) / lmbda  if lmbda != 0
            log(1+x)                    if lmbda == 0

    Returns `nan` if ``x < -1``.
    Returns `-inf` if ``x == -1`` and ``lmbda < 0``.

    .. versionadded:: 0.14.0

    Parameters
    ----------
    x : array_like
        Data to be transformed.
    lmbda : array_like
        Power parameter of the Box-Cox transform.

    Returns
    -------
    y : array
        Transformed data.

    Examples
    --------
    >> boxcox1p(1e-4, [0, 0.5, 1])
    array([  9.99950003e-05,   9.99975001e-05,   1.00000000e-04])
    >>> boxcox1p([0.01, 0.1], 0.25)
    array([ 0.00996272,  0.09645476])
    """)

add_newdoc("scipy.special", "btdtr",
    """
    btdtr(a,b,x)

    Cumulative beta distribution.

    Returns the area from zero to x under the beta density function::

        gamma(a+b)/(gamma(a)*gamma(b)))*integral(t**(a-1) (1-t)**(b-1), t=0..x)

    See Also
    --------
    betainc
    """)

add_newdoc("scipy.special", "btdtri",
    """
    btdtri(a,b,p)

    p-th quantile of the beta distribution.

    This is effectively the inverse of btdtr returning the value of x for which
    ``btdtr(a,b,x) = p``

    See Also
    --------
    betaincinv
    """)

add_newdoc("scipy.special", "cbrt",
    """
    cbrt(x)

    Cube root of x
    """)

add_newdoc("scipy.special", "chdtr",
    """
    chdtr(v, x)

    Chi square cumulative distribution function

    Returns the area under the left hand tail (from 0 to x) of the Chi
    square probability density function with v degrees of freedom::

        1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=0..x)
    """)

add_newdoc("scipy.special", "chdtrc",
    """
    chdtrc(v,x)

    Chi square survival function

    Returns the area under the right hand tail (from x to
    infinity) of the Chi square probability density function with v
    degrees of freedom::

        1/(2**(v/2) * gamma(v/2)) * integral(t**(v/2-1) * exp(-t/2), t=x..inf)
    """)

add_newdoc("scipy.special", "chdtri",
    """
    chdtri(v,p)

    Inverse to chdtrc

    Returns the argument x such that ``chdtrc(v,x) == p``.
    """)

add_newdoc("scipy.special", "chdtriv",
    """
    chdtri(p, x)

    Inverse to chdtr vs v

    Returns the argument v such that ``chdtr(v, x) == p``.
    """)

add_newdoc("scipy.special", "chndtr",
    """
    chndtr(x, df, nc)

    Non-central chi square cumulative distribution function
    
    """)

add_newdoc("scipy.special", "chndtrix",
    """
    chndtrix(p, df, nc)

    Inverse to chndtr vs x
    """)

add_newdoc("scipy.special", "chndtridf",
    """
    chndtridf(x, p, nc)

    Inverse to chndtr vs df
    """)

add_newdoc("scipy.special", "chndtrinc",
    """
    chndtrinc(x, df, p)

    Inverse to chndtr vs nc
    """)

add_newdoc("scipy.special", "cosdg",
    """
    cosdg(x)

    Cosine of the angle x given in degrees.
    """)

add_newdoc("scipy.special", "cosm1",
    """
    cosm1(x)

    cos(x) - 1 for use when x is near zero.
    """)

add_newdoc("scipy.special", "cotdg",
    """
    cotdg(x)

    Cotangent of the angle x given in degrees.
    """)

add_newdoc("scipy.special", "dawsn",
    """
    dawsn(x)

    Dawson's integral.

    Computes::

        exp(-x**2) * integral(exp(t**2),t=0..x).

    References
    ----------
    .. [1] Steven G. Johnson, Faddeeva W function implementation.
       http://ab-initio.mit.edu/Faddeeva
    """)

add_newdoc("scipy.special", "ellipe",
    """
    ellipe(m)

    Complete elliptic integral of the second kind

    ::

        integral(sqrt(1-m*sin(t)**2),t=0..pi/2)
    """)

add_newdoc("scipy.special", "ellipeinc",
    """
    ellipeinc(phi,m)

    Incomplete elliptic integral of the second kind

    ::

        integral(sqrt(1-m*sin(t)**2),t=0..phi)
    """)

add_newdoc("scipy.special", "ellipj",
    """
    ellipj(u, m)

    Jacobian elliptic functions

    Calculates the Jacobian elliptic functions of parameter m between
    0 and 1, and real u.

    Parameters
    ----------
    m, u
        Parameters

    Returns
    -------
    sn, cn, dn, ph
        The returned functions::

            sn(u|m), cn(u|m), dn(u|m)

        The value ``ph`` is such that if ``u = ellik(ph, m)``,
        then ``sn(u|m) = sin(ph)`` and ``cn(u|m) = cos(ph)``.

    """)

add_newdoc("scipy.special", "ellipkm1",
    """
    ellipkm1(p)

    The complete elliptic integral of the first kind around m=1.

    This function is defined as

    .. math:: K(p) = \\int_0^{\\pi/2} [1 - m \\sin(t)^2]^{-1/2} dt

    where `m = 1 - p`.

    Parameters
    ----------
    p : array_like
        Defines the parameter of the elliptic integral as m = 1 - p.

    Returns
    -------
    K : array_like
        Value of the elliptic integral.

    See Also
    --------
    ellipk

    """)

add_newdoc("scipy.special", "ellipkinc",
    """
    ellipkinc(phi, m)

    Incomplete elliptic integral of the first kind

    ::

        integral(1/sqrt(1-m*sin(t)**2),t=0..phi)
    """)

add_newdoc("scipy.special", "erf",
    """
    erf(z)

    Returns the error function of complex argument.

    It is defined as ``2/sqrt(pi)*integral(exp(-t**2), t=0..z)``.

    Parameters
    ----------
    x : ndarray
        Input array.

    Returns
    -------
    res : ndarray
        The values of the error function at the given points x.

    See Also
    --------
    erfc, erfinv, erfcinv

    Notes
    -----
    The cumulative of the unit normal distribution is given by
    ``Phi(z) = 1/2[1 + erf(z/sqrt(2))]``.

    References
    ----------
    .. [1] http://en.wikipedia.org/wiki/Error_function
    .. [2] Milton Abramowitz and Irene A. Stegun, eds.
        Handbook of Mathematical Functions with Formulas,
        Graphs, and Mathematical Tables. New York: Dover,
        1972. http://www.math.sfu.ca/~cbm/aands/page_297.htm
    .. [3] Steven G. Johnson, Faddeeva W function implementation.
       http://ab-initio.mit.edu/Faddeeva

    """)

add_newdoc("scipy.special", "erfc",
    """
    erfc(x)

    Complementary error function, 1 - erf(x).

    References
    ----------
    .. [1] Steven G. Johnson, Faddeeva W function implementation.
       http://ab-initio.mit.edu/Faddeeva

    """)

add_newdoc("scipy.special", "erfi",
    """
    erfi(z)

    Imaginary error function, -i erf(i z).

    .. versionadded:: 0.12.0

    References
    ----------
    .. [1] Steven G. Johnson, Faddeeva W function implementation.
       http://ab-initio.mit.edu/Faddeeva

    """)

add_newdoc("scipy.special", "erfcx",
    """
    erfcx(x)

    Scaled complementary error function, exp(x^2) erfc(x).

    .. versionadded:: 0.12.0

    References
    ----------
    .. [1] Steven G. Johnson, Faddeeva W function implementation.
       http://ab-initio.mit.edu/Faddeeva

    """)

add_newdoc("scipy.special", "eval_jacobi",
    """
    eval_jacobi(n, alpha, beta, x, out=None)

    Evaluate Jacobi polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_sh_jacobi",
    """
    eval_sh_jacobi(n, p, q, x, out=None)

    Evaluate shifted Jacobi polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_gegenbauer",
    """
    eval_gegenbauer(n, alpha, x, out=None)

    Evaluate Gegenbauer polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_chebyt",
    """
    eval_chebyt(n, x, out=None)

    Evaluate Chebyshev T polynomial at a point.

    This routine is numerically stable for `x` in ``[-1, 1]`` at least
    up to order ``10000``.
    """)

add_newdoc("scipy.special", "eval_chebyu",
    """
    eval_chebyu(n, x, out=None)

    Evaluate Chebyshev U polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_chebys",
    """
    eval_chebys(n, x, out=None)

    Evaluate Chebyshev S polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_chebyc",
    """
    eval_chebyc(n, x, out=None)

    Evaluate Chebyshev C polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_sh_chebyt",
    """
    eval_sh_chebyt(n, x, out=None)

    Evaluate shifted Chebyshev T polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_sh_chebyu",
    """
    eval_sh_chebyu(n, x, out=None)

    Evaluate shifted Chebyshev U polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_legendre",
    """
    eval_legendre(n, x, out=None)

    Evaluate Legendre polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_sh_legendre",
    """
    eval_sh_legendre(n, x, out=None)

    Evaluate shifted Legendre polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_genlaguerre",
    """
    eval_genlaguerre(n, alpha, x, out=None)

    Evaluate generalized Laguerre polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_laguerre",
     """
    eval_laguerre(n, x, out=None)

    Evaluate Laguerre polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_hermite",
    """
    eval_hermite(n, x, out=None)

    Evaluate Hermite polynomial at a point.
    """)

add_newdoc("scipy.special", "eval_hermitenorm",
    """
    eval_hermitenorm(n, x, out=None)

    Evaluate normalized Hermite polynomial at a point.
    """)

add_newdoc("scipy.special", "exp1",
    """
    exp1(z)

    Exponential integral E_1 of complex argument z

    ::

        integral(exp(-z*t)/t,t=1..inf).
    """)

add_newdoc("scipy.special", "exp10",
    """
    exp10(x)

    10**x
    """)

add_newdoc("scipy.special", "exp2",
    """
    exp2(x)

    2**x
    """)

add_newdoc("scipy.special", "expi",
    """
    expi(x)

    Exponential integral Ei

    Defined as::

        integral(exp(t)/t,t=-inf..x)

    See `expn` for a different exponential integral.
    """)

add_newdoc('scipy.special', 'expit',
    """
    expit(x)

    Expit ufunc for ndarrays.

    The expit function, also known as the logistic function, is defined as
    expit(x) = 1/(1+exp(-x)). It is the inverse of the logit function.

    .. versionadded:: 0.10.0

    Parameters
    ----------
    x : ndarray
        The ndarray to apply expit to element-wise.

    Returns
    -------
    out : ndarray
        An ndarray of the same shape as x. Its entries
        are expit of the corresponding entry of x.

    Notes
    -----
    As a ufunc logit takes a number of optional
    keyword arguments. For more information
    see `ufuncs <http://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_
    """)

add_newdoc("scipy.special", "expm1",
    """
    expm1(x)

    exp(x) - 1 for use when x is near zero.
    """)

add_newdoc("scipy.special", "expn",
    """
    expn(n, x)

    Exponential integral E_n

    Returns the exponential integral for integer n and non-negative x and n::

        integral(exp(-x*t) / t**n, t=1..inf).
    """)

add_newdoc("scipy.special", "fdtr",
    """
    fdtr(dfn, dfd, x)

    F cumulative distribution function
    
    Returns the area from zero to x under the F density function (also
    known as Snedcor's density or the variance ratio density).  This
    is the density of X = (unum/dfn)/(uden/dfd), where unum and uden
    are random variables having Chi square distributions with dfn and
    dfd degrees of freedom, respectively.
    """)

add_newdoc("scipy.special", "fdtrc",
    """
    fdtrc(dfn, dfd, x)

    F survival function

    Returns the complemented F distribution function.
    """)

add_newdoc("scipy.special", "fdtri",
    """
    fdtri(dfn, dfd, p)

    Inverse to fdtr vs x

    Finds the F density argument x such that ``fdtr(dfn, dfd, x) == p``.
    """)

add_newdoc("scipy.special", "fdtridfd",
    """
    fdtridfd(dfn, p, x)

    Inverse to fdtr vs dfd

    Finds the F density argument dfd such that ``fdtr(dfn,dfd,x) == p``.
    """)

add_newdoc("scipy.special", "fdtridfn",
    """
    fdtridfn(p, dfd, x)

    Inverse to fdtr vs dfn

    finds the F density argument dfn such that ``fdtr(dfn,dfd,x) == p``.
    """)

add_newdoc("scipy.special", "fresnel",
    """
    fresnel(z)

    Fresnel sin and cos integrals

    Defined as::

        ssa = integral(sin(pi/2 * t**2),t=0..z)
        csa = integral(cos(pi/2 * t**2),t=0..z)

    Parameters
    ----------
    z : float or complex array_like
        Argument

    Returns
    -------
    ssa, csa
        Fresnel sin and cos integral values

    """)

add_newdoc("scipy.special", "gamma",
    """
    gamma(z)

    Gamma function
    
    The gamma function is often referred to as the generalized
    factorial since ``z*gamma(z) = gamma(z+1)`` and ``gamma(n+1) =
    n!`` for natural number *n*.
    """)

add_newdoc("scipy.special", "gammainc",
    """
    gammainc(a, x)

    Incomplete gamma function
    
    Defined as::
    
        1 / gamma(a) * integral(exp(-t) * t**(a-1), t=0..x)

    `a` must be positive and `x` must be >= 0.
    """)

add_newdoc("scipy.special", "gammaincc",
    """
    gammaincc(a,x)

    Complemented incomplete gamma integral

    Defined as::

        1 / gamma(a) * integral(exp(-t) * t**(a-1), t=x..inf) = 1 - gammainc(a,x)

    `a` must be positive and `x` must be >= 0.
    """)

add_newdoc("scipy.special", "gammainccinv",
    """
    gammainccinv(a,y)

    Inverse to gammaincc

    Returns `x` such that ``gammaincc(a,x) == y``.
    """)

add_newdoc("scipy.special", "gammaincinv",
    """
    gammaincinv(a, y)

    Inverse to gammainc

    Returns `x` such that ``gammainc(a, x) = y``.
    """)

add_newdoc("scipy.special", "gammaln",
    """
    gammaln(z)

    Logarithm of absolute value of gamma function

    Defined as::

        ln(abs(gamma(z)))

    See Also
    --------
    gammasgn
    """)

add_newdoc("scipy.special", "gammasgn",
    """
    gammasgn(x)

    Sign of the gamma function.

    See Also
    --------
    gammaln
    """)

add_newdoc("scipy.special", "gdtr",
    """
    gdtr(a,b,x)

    Gamma distribution cumulative density function.

    Returns the integral from zero to x of the gamma probability
    density function::

        a**b / gamma(b) * integral(t**(b-1) exp(-at),t=0..x).

    The arguments a and b are used differently here than in other
    definitions.
    """)

add_newdoc("scipy.special", "gdtrc",
    """
    gdtrc(a,b,x)

    Gamma distribution survival function.

    Integral from x to infinity of the gamma probability density
    function.

    See Also
    --------
    gdtr, gdtri
    """)

add_newdoc("scipy.special", "gdtria",
    """
    gdtria(p, b, x, out=None)

    Inverse of gdtr vs a.

    Returns the inverse with respect to the parameter `a` of ``p =
    gdtr(a, b, x)``, the cumulative distribution function of the gamma
    distribution.

    Parameters
    ----------
    p : array_like
        Probability values.
    b : array_like
        `b` parameter values of `gdtr(a, b, x)`.  `b` is the "shape" parameter
        of the gamma distribution.
    x : array_like
        Nonnegative real values, from the domain of the gamma distribution.
    out : ndarray, optional
        If a fourth argument is given, it must be a numpy.ndarray whose size
        matches the broadcast result of `a`, `b` and `x`.  `out` is then the
        array returned by the function.

    Returns
    -------
    a : ndarray
        Values of the `a` parameter such that `p = gdtr(a, b, x)`.  `1/a`
        is the "scale" parameter of the gamma distribution.

    See Also
    --------
    gdtr : CDF of the gamma distribution.
    gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`.
    gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.

    Examples
    --------
    First evaluate `gdtr`.

    >>> p = gdtr(1.2, 3.4, 5.6)
    >>> print(p)
    0.94378087442

    Verify the inverse.

    >>> gdtria(p, 3.4, 5.6)
    1.2
    """)

add_newdoc("scipy.special", "gdtrib",
    """
    gdtrib(a, p, x, out=None)

    Inverse of gdtr vs b.

    Returns the inverse with respect to the parameter `b` of ``p =
    gdtr(a, b, x)``, the cumulative distribution function of the gamma
    distribution.

    Parameters
    ----------
    a : array_like
        `a` parameter values of `gdtr(a, b, x)`. `1/a` is the "scale"
        parameter of the gamma distribution.
    p : array_like
        Probability values.
    x : array_like
        Nonnegative real values, from the domain of the gamma distribution.
    out : ndarray, optional
        If a fourth argument is given, it must be a numpy.ndarray whose size
        matches the broadcast result of `a`, `b` and `x`.  `out` is then the
        array returned by the function.

    Returns
    -------
    b : ndarray
        Values of the `b` parameter such that `p = gdtr(a, b, x)`.  `b` is
        the "shape" parameter of the gamma distribution.

    See Also
    --------
    gdtr : CDF of the gamma distribution.
    gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.
    gdtrix : Inverse with respect to `x` of `gdtr(a, b, x)`.

    Examples
    --------
    First evaluate `gdtr`.

    >>> p = gdtr(1.2, 3.4, 5.6)
    >>> print(p)
    0.94378087442

    Verify the inverse.

    >>> gdtrib(1.2, p, 5.6)
    3.3999999999723882
    """)

add_newdoc("scipy.special", "gdtrix",
    """
    gdtrix(a, b, p, out=None)

    Inverse of gdtr vs x.

    Returns the inverse with respect to the parameter `x` of ``p =
    gdtr(a, b, x)``, the cumulative distribution function of the gamma
    distribution. This is also known as the p'th quantile of the
    distribution.

    Parameters
    ----------
    a : array_like
        `a` parameter values of `gdtr(a, b, x)`.  `1/a` is the "scale"
        parameter of the gamma distribution.
    b : array_like
        `b` parameter values of `gdtr(a, b, x)`.  `b` is the "shape" parameter
        of the gamma distribution.
    p : array_like
        Probability values.
    out : ndarray, optional
        If a fourth argument is given, it must be a numpy.ndarray whose size
        matches the broadcast result of `a`, `b` and `x`.  `out` is then the
        array returned by the function.

    Returns
    -------
    x : ndarray
        Values of the `x` parameter such that `p = gdtr(a, b, x)`.

    See Also
    --------
    gdtr : CDF of the gamma distribution.
    gdtria : Inverse with respect to `a` of `gdtr(a, b, x)`.
    gdtrib : Inverse with respect to `b` of `gdtr(a, b, x)`.

    Examples
    --------
    First evaluate `gdtr`.

    >>> p = gdtr(1.2, 3.4, 5.6)
    >>> print(p)
    0.94378087442

    Verify the inverse.

    >>> gdtrix(1.2, 3.4, p)
    5.5999999999999996
    """)

add_newdoc("scipy.special", "hankel1",
    """
    hankel1(v, z)

    Hankel function of the first kind

    Parameters
    ----------
    v : float
        Order
    z : float or complex
        Argument

    """)

add_newdoc("scipy.special", "hankel1e",
    """
    hankel1e(v, z)

    Exponentially scaled Hankel function of the first kind

    Defined as::

        hankel1e(v,z) = hankel1(v,z) * exp(-1j * z)

    Parameters
    ----------
    v : float
        Order
    z : complex
        Argument
    """)

add_newdoc("scipy.special", "hankel2",
    """
    hankel2(v, z)

    Hankel function of the second kind

    Parameters
    ----------
    v : float
        Order
    z : complex
        Argument

    """)

add_newdoc("scipy.special", "hankel2e",
    """
    hankel2e(v, z)

    Exponentially scaled Hankel function of the second kind

    Defined as::

        hankel1e(v,z) = hankel1(v,z) * exp(1j * z)

    Parameters
    ----------
    v : float
        Order
    z : complex
        Argument
    """)

add_newdoc("scipy.special", "hyp1f1",
    """
    hyp1f1(a, b, x)

    Confluent hypergeometric function 1F1(a, b; x)
    """)

add_newdoc("scipy.special", "hyp1f2",
    """
    hyp1f2(a, b, c, x)

    Hypergeometric function 1F2 and error estimate

    Returns
    -------
    y
        Value of the function
    err
        Error estimate
    """)

add_newdoc("scipy.special", "hyp2f0",
    """
    hyp2f0(a, b, x, type)

    Hypergeometric function 2F0 in y and an error estimate

    The parameter `type` determines a convergence factor and can be
    either 1 or 2.

    Returns
    -------
    y
        Value of the function
    err
        Error estimate
    """)

add_newdoc("scipy.special", "hyp2f1",
    """
    hyp2f1(a, b, c, z)

    Gauss hypergeometric function 2F1(a, b; c; z).
    """)

add_newdoc("scipy.special", "hyp3f0",
    """
    hyp3f0(a, b, c, x)

    Hypergeometric function 3F0 in y and an error estimate

    Returns
    -------
    y
        Value of the function
    err
        Error estimate
    """)

add_newdoc("scipy.special", "hyperu",
    """
    hyperu(a, b, x)

    Confluent hypergeometric function U(a, b, x) of the second kind
    """)

add_newdoc("scipy.special", "i0",
    """
    i0(x)

    Modified Bessel function of order 0
    """)

add_newdoc("scipy.special", "i0e",
    """
    i0e(x)

    Exponentially scaled modified Bessel function of order 0.

    Defined as::

        i0e(x) = exp(-abs(x)) * i0(x).
    """)

add_newdoc("scipy.special", "i1",
    """
    i1(x)

    Modified Bessel function of order 1
    """)

add_newdoc("scipy.special", "i1e",
    """
    i1e(x)

    Exponentially scaled modified Bessel function of order 0.

    Defined as::

        i1e(x) = exp(-abs(x)) * i1(x)
    """)

add_newdoc("scipy.special", "it2i0k0",
    """
    it2i0k0(x)

    Integrals related to modified Bessel functions of order 0

    Returns
    -------
    ii0
        ``integral((i0(t)-1)/t, t=0..x)``
    ik0
        ``int(k0(t)/t,t=x..inf)``
    """)

add_newdoc("scipy.special", "it2j0y0",
    """
    it2j0y0(x)

    Integrals related to Bessel functions of order 0

    Returns
    -------
    ij0
        ``integral((1-j0(t))/t, t=0..x)``
    iy0
        ``integral(y0(t)/t, t=x..inf)``
    """)

add_newdoc("scipy.special", "it2struve0",
    """
    it2struve0(x)

    Integral related to Struve function of order 0

    Returns
    -------
    i
        ``integral(H0(t)/t, t=x..inf)``
    """)

add_newdoc("scipy.special", "itairy",
    """
    itairy(x)

    Integrals of Airy functios
    
    Calculates the integral of Airy functions from 0 to x

    Returns
    -------
    Apt, Bpt
        Integrals for positive arguments
    Ant, Bnt
        Integrals for negative arguments

    """)

add_newdoc("scipy.special", "iti0k0",
    """
    iti0k0(x)

    Integrals of modified Bessel functions of order 0

    Returns simple integrals from 0 to x of the zeroth order modified
    Bessel functions i0 and k0.

    Returns
    -------
    ii0, ik0
    """)

add_newdoc("scipy.special", "itj0y0",
    """
    itj0y0(x)

    Integrals of Bessel functions of order 0
    
    Returns simple integrals from 0 to x of the zeroth order Bessel
    functions j0 and y0.

    Returns
    -------
    ij0, iy0
    """)

add_newdoc("scipy.special", "itmodstruve0",
    """
    itmodstruve0(x)

    Integral of the modified Struve function of order 0

    Returns
    -------
    i
        ``integral(L0(t), t=0..x)``
    """)

add_newdoc("scipy.special", "itstruve0",
    """
    itstruve0(x)

    Integral of the Struve function of order 0

    Returns
    -------
    i
        ``integral(H0(t), t=0..x)``
    """)

add_newdoc("scipy.special", "iv",
    """
    iv(v,z)

    Modified Bessel function of the first kind  of real order

    Parameters
    ----------
    v
        Order. If z is of real type and negative, v must be integer valued.
    z
        Argument.

    """)

add_newdoc("scipy.special", "ive",
    """
    ive(v,z)

    Exponentially scaled modified Bessel function of the first kind 

    Defined as::

        ive(v,z) = iv(v,z) * exp(-abs(z.real))
    """)

add_newdoc("scipy.special", "j0",
    """
    j0(x)

    Bessel function the first kind of order 0
    """)

add_newdoc("scipy.special", "j1",
    """
    j1(x)

    Bessel function of the first kind of order 1
    """)

add_newdoc("scipy.special", "jn",
    """
    jn(n, x)

    Bessel function of the first kind of integer order n
    """)

add_newdoc("scipy.special", "jv",
    """
    jv(v, z)

    Bessel function of the first kind of real order v
    """)

add_newdoc("scipy.special", "jve",
    """
    jve(v, z)

    Exponentially scaled Bessel function of order v

    Defined as::

        jve(v,z) = jv(v,z) * exp(-abs(z.imag))
    """)

add_newdoc("scipy.special", "k0",
    """
    k0(x)

    Modified Bessel function K of order 0

    Modified Bessel function of the second kind (sometimes called the
    third kind) of order 0.
    """)

add_newdoc("scipy.special", "k0e",
    """
    k0e(x)

    Exponentially scaled modified Bessel function K of order 0

    Defined as::

        k0e(x) = exp(x) * k0(x).
    """)

add_newdoc("scipy.special", "k1",
    """
    i1(x)

    Modified Bessel function of the first kind of order 1
    """)

add_newdoc("scipy.special", "k1e",
    """
    k1e(x)

    Exponentially scaled modified Bessel function K of order 1

    Defined as::

        k1e(x) = exp(x) * k1(x)
    """)

add_newdoc("scipy.special", "kei",
    """
    kei(x)

    Kelvin function ker
    """)

add_newdoc("scipy.special", "keip",
    """
    keip(x)

    Derivative of the Kelvin function kei
    """)

add_newdoc("scipy.special", "kelvin",
    """
    kelvin(x)

    Kelvin functions as complex numbers

    Returns
    -------
    Be, Ke, Bep, Kep
        The tuple (Be, Ke, Bep, Kep) contains complex numbers
        representing the real and imaginary Kelvin functions and their
        derivatives evaluated at x.  For example, kelvin(x)[0].real =
        ber x and kelvin(x)[0].imag = bei x with similar relationships
        for ker and kei.
    """)

add_newdoc("scipy.special", "ker",
    """
    ker(x)

    Kelvin function ker
    """)

add_newdoc("scipy.special", "kerp",
    """
    kerp(x)

    Derivative of the Kelvin function ker
    """)

add_newdoc("scipy.special", "kn",
    """
    kn(n, x)

    Modified Bessel function of the second kind of integer order n

    These are also sometimes called functions of the third kind.
    """)

add_newdoc("scipy.special", "kolmogi",
    """
    kolmogi(p)

    Inverse function to kolmogorov

    Returns y such that ``kolmogorov(y) == p``.
    """)

add_newdoc("scipy.special", "kolmogorov",
    """
    kolmogorov(y)

    Complementary cumulative distribution function of Kolmogorov distribution

    Returns the complementary cumulative distribution function of
    Kolmogorov's limiting distribution (Kn* for large n) of a
    two-sided test for equality between an empirical and a theoretical
    distribution. It is equal to the (limit as n->infinity of the)
    probability that sqrt(n) * max absolute deviation > y.
    """)

add_newdoc("scipy.special", "kv",
    """
    kv(v,z)

    Modified Bessel function of the second kind of real order v

    Returns the modified Bessel function of the second kind (sometimes
    called the third kind) for real order v at complex z.
    """)

add_newdoc("scipy.special", "kve",
    """
    kve(v,z)

    Exponentially scaled modified Bessel function of the second kind.

    Returns the exponentially scaled, modified Bessel function of the
    second kind (sometimes called the third kind) for real order v at
    complex z::

        kve(v,z) = kv(v,z) * exp(z)
    """)

add_newdoc("scipy.special", "log1p",
    """
    log1p(x)

    Calculates log(1+x) for use when x is near zero
    """)

add_newdoc('scipy.special', 'logit',
    """
    logit(x)

    Logit ufunc for ndarrays.

    The logit function is defined as logit(p) = log(p/(1-p)).
    Note that logit(0) = -inf, logit(1) = inf, and logit(p)
    for p<0 or p>1 yields nan.

    .. versionadded:: 0.10.0

    Parameters
    ----------
    x : ndarray
        The ndarray to apply logit to element-wise.

    Returns
    -------
    out : ndarray
        An ndarray of the same shape as x. Its entries
        are logit of the corresponding entry of x.

    Notes
    -----
    As a ufunc logit takes a number of optional
    keyword arguments. For more information
    see `ufuncs <http://docs.scipy.org/doc/numpy/reference/ufuncs.html>`_
    """)

add_newdoc("scipy.special", "lpmv",
    """
    lpmv(m, v, x)

    Associated legendre function of integer order.

    Parameters
    ----------
    m : int
        Order
    v : real
        Degree. Must be ``v>-m-1`` or ``v<m``
    x : complex
        Argument. Must be ``|x| <= 1``.

    """)

add_newdoc("scipy.special", "mathieu_a",
    """
    mathieu_a(m,q)

    Characteristic value of even Mathieu functions
    
    Returns the characteristic value for the even solution,
    ``ce_m(z,q)``, of Mathieu's equation.
    """)

add_newdoc("scipy.special", "mathieu_b",
    """
    mathieu_b(m,q)

    Characteristic value of odd Mathieu functions

    Returns the characteristic value for the odd solution,
    ``se_m(z,q)``, of Mathieu's equation.
    """)

add_newdoc("scipy.special", "mathieu_cem",
    """
    mathieu_cem(m,q,x)

    Even Mathieu function and its derivative

    Returns the even Mathieu function, ``ce_m(x,q)``, of order m and
    parameter q evaluated at x (given in degrees).  Also returns the
    derivative with respect to x of ce_m(x,q)

    Parameters
    ----------
    m
        Order of the function
    q
        Parameter of the function
    x
        Argument of the function, *given in degrees, not radians*

    Returns
    -------
    y
        Value of the function
    yp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "mathieu_modcem1",
    """
    mathieu_modcem1(m, q, x)

    Even modified Mathieu function of the first kind and its derivative

    Evaluates the even modified Mathieu function of the first kind,
    ``Mc1m(x,q)``, and its derivative at `x` for order m and parameter
    `q`.

    Returns
    -------
    y
        Value of the function
    yp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "mathieu_modcem2",
    """
    mathieu_modcem2(m, q, x)

    Even modified Mathieu function of the second kind and its derivative

    Evaluates the even modified Mathieu function of the second kind,
    Mc2m(x,q), and its derivative at x (given in degrees) for order m
    and parameter q.

    Returns
    -------
    y
        Value of the function
    yp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "mathieu_modsem1",
    """
    mathieu_modsem1(m,q,x)

    Odd modified Mathieu function of the first kind and its derivative

    Evaluates the odd modified Mathieu function of the first kind,
    Ms1m(x,q), and its derivative at x (given in degrees) for order m
    and parameter q.

    Returns
    -------
    y
        Value of the function
    yp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "mathieu_modsem2",
    """
    mathieu_modsem2(m, q, x)

    Odd modified Mathieu function of the second kind and its derivative

    Evaluates the odd modified Mathieu function of the second kind,
    Ms2m(x,q), and its derivative at x (given in degrees) for order m
    and parameter q.

    Returns
    -------
    y
        Value of the function
    yp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "mathieu_sem",
    """
    mathieu_sem(m, q, x)

    Odd Mathieu function and its derivative

    Returns the odd Mathieu function, se_m(x,q), of order m and
    parameter q evaluated at x (given in degrees).  Also returns the
    derivative with respect to x of se_m(x,q).

    Parameters
    ----------
    m
        Order of the function
    q
        Parameter of the function
    x
        Argument of the function, *given in degrees, not radians*.

    Returns
    -------
    y
        Value of the function
    yp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "modfresnelm",
    """
    modfresnelm(x)

    Modified Fresnel negative integrals

    Returns
    -------
    fm
        Integral ``F_-(x)``: ``integral(exp(-1j*t*t),t=x..inf)``
    km
        Integral ``K_-(x)``: ``1/sqrt(pi)*exp(1j*(x*x+pi/4))*fp``
    """)

add_newdoc("scipy.special", "modfresnelp",
    """
    modfresnelp(x)

    Modified Fresnel positive integrals

    Returns
    -------
    fp
        Integral ``F_+(x)``: ``integral(exp(1j*t*t),t=x..inf)``
    kp
        Integral ``K_+(x)``: ``1/sqrt(pi)*exp(-1j*(x*x+pi/4))*fp``
    """)

add_newdoc("scipy.special", "modstruve",
    """
    modstruve(v, x)

    Modified Struve function

    Returns the modified Struve function Lv(x) of order v at x, x must
    be positive unless v is an integer.
    """)

add_newdoc("scipy.special", "nbdtr",
    """
    nbdtr(k, n, p)

    Negative binomial cumulative distribution function
    
    Returns the sum of the terms 0 through k of the negative binomial
    distribution::

        sum((n+j-1)Cj p**n (1-p)**j,j=0..k).

    In a sequence of Bernoulli trials this is the probability that k
    or fewer failures precede the nth success.
    """)

add_newdoc("scipy.special", "nbdtrc",
    """
    nbdtrc(k,n,p)

    Negative binomial survival function

    Returns the sum of the terms k+1 to infinity of the negative
    binomial distribution.
    """)

add_newdoc("scipy.special", "nbdtri",
    """
    nbdtri(k, n, y)

    Inverse of nbdtr vs p

    Finds the argument p such that ``nbdtr(k,n,p) = y``.
    """)

add_newdoc("scipy.special", "nbdtrik",
    """
    nbdtrik(y,n,p)

    Inverse of nbdtr vs k

    Finds the argument k such that ``nbdtr(k,n,p) = y``.
    """)

add_newdoc("scipy.special", "nbdtrin",
    """
    nbdtrin(k,y,p)

    Inverse of nbdtr vs n

    Finds the argument n such that ``nbdtr(k,n,p) = y``.
    """)

add_newdoc("scipy.special", "ncfdtr",
    """
    """)

add_newdoc("scipy.special", "ncfdtri",
    """
    """)

add_newdoc("scipy.special", "ncfdtrifn",
    """
    """)

add_newdoc("scipy.special", "ncfdtridfd",
    """
    """)

add_newdoc("scipy.special", "ncfdtridfn",
    """
    """)

add_newdoc("scipy.special", "ncfdtrinc",
    """
    """)

add_newdoc("scipy.special", "nctdtr",
    """
    """)

add_newdoc("scipy.special", "nctdtridf",
    """
    """)

add_newdoc("scipy.special", "nctdtrinc",
    """
    """)

add_newdoc("scipy.special", "nctdtrit",
    """
    """)

add_newdoc("scipy.special", "ndtr",
    """
    ndtr(x)

    Gaussian cumulative distribution function
    
    Returns the area under the standard Gaussian probability
    density function, integrated from minus infinity to x::

        1/sqrt(2*pi) * integral(exp(-t**2 / 2),t=-inf..x)

    """)

add_newdoc("scipy.special", "nrdtrimn",
    """
    """)

add_newdoc("scipy.special", "nrdtrisd",
    """
    """)

add_newdoc("scipy.special", "log_ndtr",
    """
    log_ndtr(x)

    Logarithm of Gaussian cumulative distribution function

    Returns the log of the area under the standard Gaussian probability
    density function, integrated from minus infinity to x::

        log(1/sqrt(2*pi) * integral(exp(-t**2 / 2), t=-inf..x))
    """)

add_newdoc("scipy.special", "ndtri",
    """
    ndtri(y)

    Inverse of ndtr vs x

    Returns the argument x for which the area under the Gaussian
    probability density function (integrated from minus infinity to x)
    is equal to y.
    """)

add_newdoc("scipy.special", "obl_ang1",
    """
    obl_ang1(m, n, c, x)

    Oblate spheroidal angular function of the first kind and its derivative

    Computes the oblate sheroidal angular function of the first kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "obl_ang1_cv",
    """
    obl_ang1_cv(m, n, c, cv, x)

    Oblate sheroidal angular function obl_ang1 for precomputed characteristic value

    Computes the oblate sheroidal angular function of the first kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires
    pre-computed characteristic value.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "obl_cv",
    """
    obl_cv(m, n, c)

    Characteristic value of oblate spheroidal function

    Computes the characteristic value of oblate spheroidal wave
    functions of order m,n (n>=m) and spheroidal parameter c.
    """)

add_newdoc("scipy.special", "obl_rad1",
    """
    obl_rad1(m,n,c,x)

    Oblate spheroidal radial function of the first kind and its derivative

    Computes the oblate sheroidal radial function of the first kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "obl_rad1_cv",
    """
    obl_rad1_cv(m,n,c,cv,x)

    Oblate sheroidal radial function obl_rad1 for precomputed characteristic value

    Computes the oblate sheroidal radial function of the first kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires
    pre-computed characteristic value.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "obl_rad2",
    """
    obl_rad2(m,n,c,x)

    Oblate spheroidal radial function of the second kind and its derivative.

    Computes the oblate sheroidal radial function of the second kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "obl_rad2_cv",
    """
    obl_rad2_cv(m,n,c,cv,x)

    Oblate sheroidal radial function obl_rad2 for precomputed characteristic value

    Computes the oblate sheroidal radial function of the second kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires
    pre-computed characteristic value.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pbdv",
    """
    pbdv(v, x)

    Parabolic cylinder function D

    Returns (d,dp) the parabolic cylinder function Dv(x) in d and the
    derivative, Dv'(x) in dp.

    Returns
    -------
    d
        Value of the function
    dp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pbvv",
    """
    pbvv(v,x)

    Parabolic cylinder function V
    
    Returns the parabolic cylinder function Vv(x) in v and the
    derivative, Vv'(x) in vp.

    Returns
    -------
    v
        Value of the function
    vp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pbwa",
    """
    pbwa(a,x)

    Parabolic cylinder function W

    Returns the parabolic cylinder function W(a,x) in w and the
    derivative, W'(a,x) in wp.

    .. warning::

       May not be accurate for large (>5) arguments in a and/or x.

    Returns
    -------
    w
        Value of the function
    wp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pdtr",
    """
    pdtr(k, m)

    Poisson cumulative distribution function

    Returns the sum of the first k terms of the Poisson distribution:
    sum(exp(-m) * m**j / j!, j=0..k) = gammaincc( k+1, m).  Arguments
    must both be positive and k an integer.
    """)

add_newdoc("scipy.special", "pdtrc",
    """
    pdtrc(k, m)

    Poisson survival function

    Returns the sum of the terms from k+1 to infinity of the Poisson
    distribution: sum(exp(-m) * m**j / j!, j=k+1..inf) = gammainc(
    k+1, m).  Arguments must both be positive and k an integer.
    """)

add_newdoc("scipy.special", "pdtri",
    """
    pdtri(k,y)

    Inverse to pdtr vs m

    Returns the Poisson variable m such that the sum from 0 to k of
    the Poisson density is equal to the given probability y:
    calculated by gammaincinv(k+1, y).  k must be a nonnegative
    integer and y between 0 and 1.
    """)

add_newdoc("scipy.special", "pdtrik",
    """
    pdtrik(p,m)

    Inverse to pdtr vs k

    Returns the quantile k such that ``pdtr(k, m) = p``
    """)

add_newdoc("scipy.special", "poch",
    """
    poch(z, m)

    Rising factorial (z)_m

    The Pochhammer symbol (rising factorial), is defined as::

        (z)_m = gamma(z + m) / gamma(z)

    For positive integer `m` it reads::

        (z)_m = z * (z + 1) * ... * (z + m - 1)
    """)

add_newdoc("scipy.special", "pro_ang1",
    """
    pro_ang1(m,n,c,x)

    Prolate spheroidal angular function of the first kind and its derivative

    Computes the prolate sheroidal angular function of the first kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pro_ang1_cv",
    """
    pro_ang1_cv(m,n,c,cv,x)

    Prolate sheroidal angular function pro_ang1 for precomputed characteristic value

    Computes the prolate sheroidal angular function of the first kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires
    pre-computed characteristic value.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pro_cv",
    """
    pro_cv(m,n,c)

    Characteristic value of prolate spheroidal function

    Computes the characteristic value of prolate spheroidal wave
    functions of order m,n (n>=m) and spheroidal parameter c.
    """)

add_newdoc("scipy.special", "pro_rad1",
    """
    pro_rad1(m,n,c,x)

    Prolate spheroidal radial function of the first kind and its derivative

    Computes the prolate sheroidal radial function of the first kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pro_rad1_cv",
    """
    pro_rad1_cv(m,n,c,cv,x)

    Prolate sheroidal radial function pro_rad1 for precomputed characteristic value

    Computes the prolate sheroidal radial function of the first kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires
    pre-computed characteristic value.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pro_rad2",
    """
    pro_rad2(m,n,c,x)

    Prolate spheroidal radial function of the secon kind and its derivative

    Computes the prolate sheroidal radial function of the second kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and |x|<1.0.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "pro_rad2_cv",
    """
    pro_rad2_cv(m,n,c,cv,x)

    Prolate sheroidal radial function pro_rad2 for precomputed characteristic value

    Computes the prolate sheroidal radial function of the second kind
    and its derivative (with respect to x) for mode parameters m>=0
    and n>=m, spheroidal parameter c and ``|x| < 1.0``. Requires
    pre-computed characteristic value.

    Returns
    -------
    s
        Value of the function
    sp
        Value of the derivative vs x
    """)

add_newdoc("scipy.special", "psi",
    """
    psi(z)

    Digamma function

    The derivative of the logarithm of the gamma function evaluated at
    z (also called the digamma function).
    """)

add_newdoc("scipy.special", "radian",
    """
    radian(d, m, s)

    Convert from degrees to radians

    Returns the angle given in (d)egrees, (m)inutes, and (s)econds in
    radians.
    """)

add_newdoc("scipy.special", "rgamma",
    """
    rgamma(z)

    Gamma function inverted

    Returns ``1/gamma(x)``
    """)

add_newdoc("scipy.special", "round",
    """
    round(x)

    Round to nearest integer

    Returns the nearest integer to x as a double precision floating
    point result.  If x ends in 0.5 exactly, the nearest even integer
    is chosen.
    """)

add_newdoc("scipy.special", "shichi",
    """
    shichi(x)

    Hyperbolic sine and cosine integrals

    Returns
    -------
    shi
        ``integral(sinh(t)/t,t=0..x)``
    chi
        ``eul + ln x + integral((cosh(t)-1)/t,t=0..x)``
        where ``eul`` is Euler's constant.
    """)

add_newdoc("scipy.special", "sici",
    """
    sici(x)

    Sine and cosine integrals

    Returns
    -------
    si
        ``integral(sin(t)/t,t=0..x)``
    ci
        ``eul + ln x + integral((cos(t) - 1)/t,t=0..x)``
        where ``eul`` is Euler's constant.
    """)

add_newdoc("scipy.special", "sindg",
    """
    sindg(x)

    Sine of angle given in degrees
    """)

add_newdoc("scipy.special", "smirnov",
    """
    smirnov(n,e)

    Kolmogorov-Smirnov complementary cumulative distribution function

    Returns the exact Kolmogorov-Smirnov complementary cumulative
    distribution function (Dn+ or Dn-) for a one-sided test of
    equality between an empirical and a theoretical distribution. It
    is equal to the probability that the maximum difference between a
    theoretical distribution and an empirical one based on n samples
    is greater than e.
    """)

add_newdoc("scipy.special", "smirnovi",
    """
    smirnovi(n,y)

    Inverse to smirnov

    Returns ``e`` such that ``smirnov(n,e) = y``.
    """)

add_newdoc("scipy.special", "spence",
    """
    spence(x)

    Dilogarithm integral

    Returns the dilogarithm integral::

        -integral(log t / (t-1),t=1..x)
    """)

add_newdoc("scipy.special", "stdtr",
    """
    stdtr(df,t)

    Student t distribution cumulative density function

    Returns the integral from minus infinity to t of the Student t
    distribution with df > 0 degrees of freedom::

       gamma((df+1)/2)/(sqrt(df*pi)*gamma(df/2)) *
       integral((1+x**2/df)**(-df/2-1/2), x=-inf..t)

    """)

add_newdoc("scipy.special", "stdtridf",
    """
    stdtridf(p,t)

    Inverse of stdtr vs df

    Returns the argument df such that stdtr(df,t) is equal to p.
    """)

add_newdoc("scipy.special", "stdtrit",
    """
    stdtrit(df,p)

    Inverse of stdtr vs t

    Returns the argument t such that stdtr(df,t) is equal to p.
    """)

add_newdoc("scipy.special", "struve",
    """
    struve(v,x)

    Struve function

    Computes the struve function Hv(x) of order v at x, x must be
    positive unless v is an integer.
    """)

add_newdoc("scipy.special", "tandg",
    """
    tandg(x)

    Tangent of angle x given in degrees.
    """)

add_newdoc("scipy.special", "tklmbda",
    """
    tklmbda(x, lmbda)

    Tukey-Lambda cumulative distribution function

    """)

add_newdoc("scipy.special", "wofz",
    """
    wofz(z)

    Faddeeva function
    
    Returns the value of the Faddeeva function for complex argument::

        exp(-z**2)*erfc(-i*z)

    References
    ----------
    .. [1] Steven G. Johnson, Faddeeva W function implementation.
       http://ab-initio.mit.edu/Faddeeva
    """)

add_newdoc("scipy.special", "xlogy",
    """
    xlogy(x, y)

    Compute ``x*log(y)`` so that the result is 0 if `x = 0`.

    .. versionadded:: 0.13.0

    Parameters
    ----------
    x : array_like
        Multiplier
    y : array_like
        Argument

    Returns
    -------
    z : array_like
        Computed x*log(y)

    """)

add_newdoc("scipy.special", "xlog1py",
    """
    xlog1py(x, y)

    Compute ``x*log1p(y)`` so that the result is 0 if `x = 0`.

    .. versionadded:: 0.13.0

    Parameters
    ----------
    x : array_like
        Multiplier
    y : array_like
        Argument

    Returns
    -------
    z : array_like
        Computed x*log1p(y)

    """)

add_newdoc("scipy.special", "y0",
    """
    y0(x)

    Bessel function of the second kind of order 0

    Returns the Bessel function of the second kind of order 0 at x.
    """)

add_newdoc("scipy.special", "y1",
    """
    y1(x)

    Bessel function of the second kind of order 1

    Returns the Bessel function of the second kind of order 1 at x.
    """)

add_newdoc("scipy.special", "yn",
    """
    yn(n,x)

    Bessel function of the second kind of integer order

    Returns the Bessel function of the second kind of integer order n
    at x.
    """)

add_newdoc("scipy.special", "yv",
    """
    yv(v,z)

    Bessel function of the second kind of real order

    Returns the Bessel function of the second kind of real order v at
    complex z.
    """)

add_newdoc("scipy.special", "yve",
    """
    yve(v,z)

    Exponentially scaled Bessel function of the second kind of real order

    Returns the exponentially scaled Bessel function of the second
    kind of real order v at complex z::

        yve(v,z) = yv(v,z) * exp(-abs(z.imag))

    """)

add_newdoc("scipy.special", "zeta",
    """
    zeta(x, q)

    Hurwitz zeta function

    The Riemann zeta function of two arguments (also known as the
    Hurwitz zeta funtion).

    This function is defined as

    .. math:: \\zeta(x, q) = \\sum_{k=0}^{\\infty} 1 / (k+q)^x,

    where ``x > 1`` and ``q > 0``.

    See also
    --------
    zetac

    """)

add_newdoc("scipy.special", "zetac",
    """
    zetac(x)

    Riemann zeta function minus 1.

    This function is defined as

    .. math:: \\zeta(x) = \\sum_{k=2}^{\\infty} 1 / k^x,

    where ``x > 1``.

    See Also
    --------
    zeta

    """)

add_newdoc("scipy.special", "_struve_asymp_large_z",
    """
    _struve_asymp_large_z(v, z, is_h)

    Internal function for testing struve & modstruve

    Evaluates using asymptotic expansion

    Returns
    -------
    v, err
    """)

add_newdoc("scipy.special", "_struve_power_series",
    """
    _struve_power_series(v, z, is_h)

    Internal function for testing struve & modstruve

    Evaluates using power series

    Returns
    -------
    v, err
    """)

add_newdoc("scipy.special", "_struve_bessel_series",
    """
    _struve_bessel_series(v, z, is_h)

    Internal function for testing struve & modstruve

    Evaluates using Bessel function series

    Returns
    -------
    v, err
    """)