1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
/* powi.c
*
* Real raised to integer power
*
*
*
* SYNOPSIS:
*
* double x, y, powi();
* int n;
*
* y = powi( x, n );
*
*
*
* DESCRIPTION:
*
* Returns argument x raised to the nth power.
* The routine efficiently decomposes n as a sum of powers of
* two. The desired power is a product of two-to-the-kth
* powers of x. Thus to compute the 32767 power of x requires
* 28 multiplications instead of 32767 multiplications.
*
*
*
* ACCURACY:
*
*
* Relative error:
* arithmetic x domain n domain # trials peak rms
* DEC .04,26 -26,26 100000 2.7e-16 4.3e-17
* IEEE .04,26 -26,26 50000 2.0e-15 3.8e-16
* IEEE 1,2 -1022,1023 50000 8.6e-14 1.6e-14
*
* Returns NPY_INFINITY on overflow, zero on underflow.
*
*/
/* powi.c */
/*
* Cephes Math Library Release 2.3: March, 1995
* Copyright 1984, 1995 by Stephen L. Moshier
*/
#include "mconf.h"
extern double MAXLOG, MINLOG, LOGE2;
double powi(x, nn)
double x;
int nn;
{
int n, e, sign, asign, lx;
double w, y, s;
/* See pow.c for these tests. */
if (x == 0.0) {
if (nn == 0)
return (1.0);
else if (nn < 0)
return (NPY_INFINITY);
else {
if (nn & 1)
return (x);
else
return (0.0);
}
}
if (nn == 0)
return (1.0);
if (nn == -1)
return (1.0 / x);
if (x < 0.0) {
asign = -1;
x = -x;
}
else
asign = 0;
if (nn < 0) {
sign = -1;
n = -nn;
}
else {
sign = 1;
n = nn;
}
/* Even power will be positive. */
if ((n & 1) == 0)
asign = 0;
/* Overflow detection */
/* Calculate approximate logarithm of answer */
s = frexp(x, &lx);
e = (lx - 1) * n;
if ((e == 0) || (e > 64) || (e < -64)) {
s = (s - 7.0710678118654752e-1) / (s + 7.0710678118654752e-1);
s = (2.9142135623730950 * s - 0.5 + lx) * nn * LOGE2;
}
else {
s = LOGE2 * e;
}
if (s > MAXLOG) {
mtherr("powi", OVERFLOW);
y = NPY_INFINITY;
goto done;
}
#if DENORMAL
if (s < MINLOG) {
y = 0.0;
goto done;
}
/* Handle tiny denormal answer, but with less accuracy
* since roundoff error in 1.0/x will be amplified.
* The precise demarcation should be the gradual underflow threshold.
*/
if ((s < (-MAXLOG + 2.0)) && (sign < 0)) {
x = 1.0 / x;
sign = -sign;
}
#else
/* do not produce denormal answer */
if (s < -MAXLOG)
return (0.0);
#endif
/* First bit of the power */
if (n & 1)
y = x;
else
y = 1.0;
w = x;
n >>= 1;
while (n) {
w = w * w; /* arg to the 2-to-the-kth power */
if (n & 1) /* if that bit is set, then include in product */
y *= w;
n >>= 1;
}
if (sign < 0)
y = 1.0 / y;
done:
if (asign) {
/* odd power of negative number */
if (y == 0.0)
y = NPY_NZERO;
else
y = -y;
}
return (y);
}
|