File: _distn_infrastructure.py

package info (click to toggle)
python-scipy 0.14.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 52,228 kB
  • ctags: 63,719
  • sloc: python: 112,726; fortran: 88,685; cpp: 86,979; ansic: 85,860; makefile: 530; sh: 236
file content (3212 lines) | stat: -rw-r--r-- 109,904 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
#
# Author:  Travis Oliphant  2002-2011 with contributions from
#          SciPy Developers 2004-2011
#
from __future__ import division, print_function, absolute_import

from scipy.lib.six import string_types, exec_

import sys
import keyword
import re
import inspect
import types
import warnings

from scipy.misc import doccer
from ._distr_params import distcont, distdiscrete

from scipy.special import comb, xlogy, chndtr, gammaln, hyp0f1

# for root finding for discrete distribution ppf, and max likelihood estimation
from scipy import optimize

# for functions of continuous distributions (e.g. moments, entropy, cdf)
from scipy import integrate

# to approximate the pdf of a continuous distribution given its cdf
from scipy.misc import derivative

from numpy import (arange, putmask, ravel, take, ones, sum, shape,
                   product, reshape, zeros, floor, logical_and, log, sqrt, exp,
                   ndarray)

from numpy import (place, any, argsort, argmax, vectorize,
                   asarray, nan, inf, isinf, NINF, empty)

import numpy as np
import numpy.random as mtrand

from ._constants import _EPS, _XMAX

try:
    from new import instancemethod
except ImportError:
    # Python 3
    def instancemethod(func, obj, cls):
        return types.MethodType(func, obj)


# These are the docstring parts used for substitution in specific
# distribution docstrings

docheaders = {'methods': """\nMethods\n-------\n""",
              'parameters': """\nParameters\n---------\n""",
              'notes': """\nNotes\n-----\n""",
              'examples': """\nExamples\n--------\n"""}

_doc_rvs = """\
rvs(%(shapes)s, loc=0, scale=1, size=1)
    Random variates.
"""
_doc_pdf = """\
pdf(x, %(shapes)s, loc=0, scale=1)
    Probability density function.
"""
_doc_logpdf = """\
logpdf(x, %(shapes)s, loc=0, scale=1)
    Log of the probability density function.
"""
_doc_pmf = """\
pmf(x, %(shapes)s, loc=0, scale=1)
    Probability mass function.
"""
_doc_logpmf = """\
logpmf(x, %(shapes)s, loc=0, scale=1)
    Log of the probability mass function.
"""
_doc_cdf = """\
cdf(x, %(shapes)s, loc=0, scale=1)
    Cumulative density function.
"""
_doc_logcdf = """\
logcdf(x, %(shapes)s, loc=0, scale=1)
    Log of the cumulative density function.
"""
_doc_sf = """\
sf(x, %(shapes)s, loc=0, scale=1)
    Survival function (1-cdf --- sometimes more accurate).
"""
_doc_logsf = """\
logsf(x, %(shapes)s, loc=0, scale=1)
    Log of the survival function.
"""
_doc_ppf = """\
ppf(q, %(shapes)s, loc=0, scale=1)
    Percent point function (inverse of cdf --- percentiles).
"""
_doc_isf = """\
isf(q, %(shapes)s, loc=0, scale=1)
    Inverse survival function (inverse of sf).
"""
_doc_moment = """\
moment(n, %(shapes)s, loc=0, scale=1)
    Non-central moment of order n
"""
_doc_stats = """\
stats(%(shapes)s, loc=0, scale=1, moments='mv')
    Mean('m'), variance('v'), skew('s'), and/or kurtosis('k').
"""
_doc_entropy = """\
entropy(%(shapes)s, loc=0, scale=1)
    (Differential) entropy of the RV.
"""
_doc_fit = """\
fit(data, %(shapes)s, loc=0, scale=1)
    Parameter estimates for generic data.
"""
_doc_expect = """\
expect(func, %(shapes)s, loc=0, scale=1, lb=None, ub=None, conditional=False, **kwds)
    Expected value of a function (of one argument) with respect to the distribution.
"""
_doc_expect_discrete = """\
expect(func, %(shapes)s, loc=0, lb=None, ub=None, conditional=False)
    Expected value of a function (of one argument) with respect to the distribution.
"""
_doc_median = """\
median(%(shapes)s, loc=0, scale=1)
    Median of the distribution.
"""
_doc_mean = """\
mean(%(shapes)s, loc=0, scale=1)
    Mean of the distribution.
"""
_doc_var = """\
var(%(shapes)s, loc=0, scale=1)
    Variance of the distribution.
"""
_doc_std = """\
std(%(shapes)s, loc=0, scale=1)
    Standard deviation of the distribution.
"""
_doc_interval = """\
interval(alpha, %(shapes)s, loc=0, scale=1)
    Endpoints of the range that contains alpha percent of the distribution
"""
_doc_allmethods = ''.join([docheaders['methods'], _doc_rvs, _doc_pdf,
                           _doc_logpdf, _doc_cdf, _doc_logcdf, _doc_sf,
                           _doc_logsf, _doc_ppf, _doc_isf, _doc_moment,
                           _doc_stats, _doc_entropy, _doc_fit,
                           _doc_expect, _doc_median,
                           _doc_mean, _doc_var, _doc_std, _doc_interval])

# Note that the two lines for %(shapes) are searched for and replaced in
# rv_continuous and rv_discrete - update there if the exact string changes
_doc_default_callparams = """
Parameters
----------
x : array_like
    quantiles
q : array_like
    lower or upper tail probability
%(shapes)s : array_like
    shape parameters
loc : array_like, optional
    location parameter (default=0)
scale : array_like, optional
    scale parameter (default=1)
size : int or tuple of ints, optional
    shape of random variates (default computed from input arguments )
moments : str, optional
    composed of letters ['mvsk'] specifying which moments to compute where
    'm' = mean, 'v' = variance, 's' = (Fisher's) skew and
    'k' = (Fisher's) kurtosis. (default='mv')
"""
_doc_default_longsummary = """\
Continuous random variables are defined from a standard form and may
require some shape parameters to complete its specification.  Any
optional keyword parameters can be passed to the methods of the RV
object as given below:
"""
_doc_default_frozen_note = """
Alternatively, the object may be called (as a function) to fix the shape,
location, and scale parameters returning a "frozen" continuous RV object:

rv = %(name)s(%(shapes)s, loc=0, scale=1)
    - Frozen RV object with the same methods but holding the given shape,
      location, and scale fixed.
"""
_doc_default_example = """\
Examples
--------
>>> from scipy.stats import %(name)s
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

%(set_vals_stmt)s
>>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk')

Display the probability density function (``pdf``):

>>> x = np.linspace(%(name)s.ppf(0.01, %(shapes)s),
...               %(name)s.ppf(0.99, %(shapes)s), 100)
>>> ax.plot(x, %(name)s.pdf(x, %(shapes)s),
...          'r-', lw=5, alpha=0.6, label='%(name)s pdf')

Alternatively, freeze the distribution and display the frozen pdf:

>>> rv = %(name)s(%(shapes)s)
>>> ax.plot(x, rv.pdf(x), 'k-', lw=2, label='frozen pdf')

Check accuracy of ``cdf`` and ``ppf``:

>>> vals = %(name)s.ppf([0.001, 0.5, 0.999], %(shapes)s)
>>> np.allclose([0.001, 0.5, 0.999], %(name)s.cdf(vals, %(shapes)s))
True

Generate random numbers:

>>> r = %(name)s.rvs(%(shapes)s, size=1000)

And compare the histogram:

>>> ax.hist(r, normed=True, histtype='stepfilled', alpha=0.2)
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()
"""

_doc_default = ''.join([_doc_default_longsummary,
                        _doc_allmethods,
                        _doc_default_callparams,
                        _doc_default_frozen_note,
                        _doc_default_example])

_doc_default_before_notes = ''.join([_doc_default_longsummary,
                                     _doc_allmethods,
                                     _doc_default_callparams,
                                     _doc_default_frozen_note])

docdict = {
    'rvs': _doc_rvs,
    'pdf': _doc_pdf,
    'logpdf': _doc_logpdf,
    'cdf': _doc_cdf,
    'logcdf': _doc_logcdf,
    'sf': _doc_sf,
    'logsf': _doc_logsf,
    'ppf': _doc_ppf,
    'isf': _doc_isf,
    'stats': _doc_stats,
    'entropy': _doc_entropy,
    'fit': _doc_fit,
    'moment': _doc_moment,
    'expect': _doc_expect,
    'interval': _doc_interval,
    'mean': _doc_mean,
    'std': _doc_std,
    'var': _doc_var,
    'median': _doc_median,
    'allmethods': _doc_allmethods,
    'callparams': _doc_default_callparams,
    'longsummary': _doc_default_longsummary,
    'frozennote': _doc_default_frozen_note,
    'example': _doc_default_example,
    'default': _doc_default,
    'before_notes': _doc_default_before_notes
}

# Reuse common content between continuous and discrete docs, change some
# minor bits.
docdict_discrete = docdict.copy()

docdict_discrete['pmf'] = _doc_pmf
docdict_discrete['logpmf'] = _doc_logpmf
docdict_discrete['expect'] = _doc_expect_discrete
_doc_disc_methods = ['rvs', 'pmf', 'logpmf', 'cdf', 'logcdf', 'sf', 'logsf',
                     'ppf', 'isf', 'stats', 'entropy', 'expect', 'median',
                     'mean', 'var', 'std', 'interval']
for obj in _doc_disc_methods:
    docdict_discrete[obj] = docdict_discrete[obj].replace(', scale=1', '')
docdict_discrete.pop('pdf')
docdict_discrete.pop('logpdf')

_doc_allmethods = ''.join([docdict_discrete[obj] for obj in _doc_disc_methods])
docdict_discrete['allmethods'] = docheaders['methods'] + _doc_allmethods

docdict_discrete['longsummary'] = _doc_default_longsummary.replace(
    'Continuous', 'Discrete')
_doc_default_frozen_note = """
Alternatively, the object may be called (as a function) to fix the shape and
location parameters returning a "frozen" discrete RV object:

rv = %(name)s(%(shapes)s, loc=0)
    - Frozen RV object with the same methods but holding the given shape and
      location fixed.
"""
docdict_discrete['frozennote'] = _doc_default_frozen_note

_doc_default_discrete_example = """\
Examples
--------
>>> from scipy.stats import %(name)s
>>> import matplotlib.pyplot as plt
>>> fig, ax = plt.subplots(1, 1)

Calculate a few first moments:

%(set_vals_stmt)s
>>> mean, var, skew, kurt = %(name)s.stats(%(shapes)s, moments='mvsk')

Display the probability mass function (``pmf``):

>>> x = np.arange(%(name)s.ppf(0.01, %(shapes)s),
...               %(name)s.ppf(0.99, %(shapes)s))
>>> ax.plot(x, %(name)s.pmf(x, %(shapes)s), 'bo', ms=8, label='%(name)s pmf')
>>> ax.vlines(x, 0, %(name)s.pmf(x, %(shapes)s), colors='b', lw=5, alpha=0.5)

Alternatively, freeze the distribution and display the frozen ``pmf``:

>>> rv = %(name)s(%(shapes)s)
>>> ax.vlines(x, 0, rv.pmf(x), colors='k', linestyles='-', lw=1, 
...         label='frozen pmf')
>>> ax.legend(loc='best', frameon=False)
>>> plt.show()

Check accuracy of ``cdf`` and ``ppf``:

>>> prob = %(name)s.cdf(x, %(shapes)s)
>>> np.allclose(x, %(name)s.ppf(prob, %(shapes)s))
True

Generate random numbers:

>>> r = %(name)s.rvs(%(shapes)s, size=1000)
"""
docdict_discrete['example'] = _doc_default_discrete_example

_doc_default_before_notes = ''.join([docdict_discrete['longsummary'],
                                     docdict_discrete['allmethods'],
                                     docdict_discrete['callparams'],
                                     docdict_discrete['frozennote']])
docdict_discrete['before_notes'] = _doc_default_before_notes

_doc_default_disc = ''.join([docdict_discrete['longsummary'],
                             docdict_discrete['allmethods'],
                             docdict_discrete['frozennote'],
                             docdict_discrete['example']])
docdict_discrete['default'] = _doc_default_disc


# clean up all the separate docstring elements, we do not need them anymore
for obj in [s for s in dir() if s.startswith('_doc_')]:
    exec('del ' + obj)
del obj
try:
    del s
except NameError:
    # in Python 3, loop variables are not visible after the loop
    pass


def _moment(data, n, mu=None):
    if mu is None:
        mu = data.mean()
    return ((data - mu)**n).mean()


def _moment_from_stats(n, mu, mu2, g1, g2, moment_func, args):
    if (n == 0):
        return 1.0
    elif (n == 1):
        if mu is None:
            val = moment_func(1, *args)
        else:
            val = mu
    elif (n == 2):
        if mu2 is None or mu is None:
            val = moment_func(2, *args)
        else:
            val = mu2 + mu*mu
    elif (n == 3):
        if g1 is None or mu2 is None or mu is None:
            val = moment_func(3, *args)
        else:
            mu3 = g1 * np.power(mu2, 1.5)  # 3rd central moment
            val = mu3+3*mu*mu2+mu*mu*mu  # 3rd non-central moment
    elif (n == 4):
        if g1 is None or g2 is None or mu2 is None or mu is None:
            val = moment_func(4, *args)
        else:
            mu4 = (g2+3.0)*(mu2**2.0)  # 4th central moment
            mu3 = g1*np.power(mu2, 1.5)  # 3rd central moment
            val = mu4+4*mu*mu3+6*mu*mu*mu2+mu*mu*mu*mu
    else:
        val = moment_func(n, *args)

    return val


def _skew(data):
    """
    skew is third central moment / variance**(1.5)
    """
    data = np.ravel(data)
    mu = data.mean()
    m2 = ((data - mu)**2).mean()
    m3 = ((data - mu)**3).mean()
    return m3 / np.power(m2, 1.5)


def _kurtosis(data):
    """
    kurtosis is fourth central moment / variance**2 - 3
    """
    data = np.ravel(data)
    mu = data.mean()
    m2 = ((data - mu)**2).mean()
    m4 = ((data - mu)**4).mean()
    return m4 / m2**2 - 3


# Frozen RV class
class rv_frozen(object):

    def __init__(self, dist, *args, **kwds):
        self.args = args
        self.kwds = kwds

        # create a new instance
        self.dist = dist.__class__(**dist._ctor_param)

        # a, b may be set in _argcheck, depending on *args, **kwds. Ouch.
        shapes, _, _ = self.dist._parse_args(*args, **kwds)
        self.dist._argcheck(*shapes)

    def pdf(self, x):   # raises AttributeError in frozen discrete distribution
        return self.dist.pdf(x, *self.args, **self.kwds)

    def logpdf(self, x):
        return self.dist.logpdf(x, *self.args, **self.kwds)

    def cdf(self, x):
        return self.dist.cdf(x, *self.args, **self.kwds)

    def logcdf(self, x):
        return self.dist.logcdf(x, *self.args, **self.kwds)

    def ppf(self, q):
        return self.dist.ppf(q, *self.args, **self.kwds)

    def isf(self, q):
        return self.dist.isf(q, *self.args, **self.kwds)

    def rvs(self, size=None):
        kwds = self.kwds.copy()
        kwds.update({'size': size})
        return self.dist.rvs(*self.args, **kwds)

    def sf(self, x):
        return self.dist.sf(x, *self.args, **self.kwds)

    def logsf(self, x):
        return self.dist.logsf(x, *self.args, **self.kwds)

    def stats(self, moments='mv'):
        kwds = self.kwds.copy()
        kwds.update({'moments': moments})
        return self.dist.stats(*self.args, **kwds)

    def median(self):
        return self.dist.median(*self.args, **self.kwds)

    def mean(self):
        return self.dist.mean(*self.args, **self.kwds)

    def var(self):
        return self.dist.var(*self.args, **self.kwds)

    def std(self):
        return self.dist.std(*self.args, **self.kwds)

    def moment(self, n):
        return self.dist.moment(n, *self.args, **self.kwds)

    def entropy(self):
        return self.dist.entropy(*self.args, **self.kwds)

    def pmf(self, k):
        return self.dist.pmf(k, *self.args, **self.kwds)

    def logpmf(self, k):
        return self.dist.logpmf(k, *self.args, **self.kwds)

    def interval(self, alpha):
        return self.dist.interval(alpha, *self.args, **self.kwds)


def valarray(shape, value=nan, typecode=None):
    """Return an array of all value.
    """

    out = ones(shape, dtype=bool) * value
    if typecode is not None:
        out = out.astype(typecode)
    if not isinstance(out, ndarray):
        out = asarray(out)
    return out


def _lazywhere(cond, arrays, f, fillvalue=None, f2=None):
    """
    np.where(cond, x, fillvalue) always evaluates x even where cond is False.
    This one only evaluates f(arr1[cond], arr2[cond], ...).
    For example,
    >>> a, b = np.array([1, 2, 3, 4]), np.array([5, 6, 7, 8])
    >>> def f(a, b):
        return a*b
    >>> _lazywhere(a > 2, (a, b), f, np.nan)
    array([ nan,  nan,  21.,  32.])

    Notice it assumes that all `arrays` are of the same shape, or can be
    broadcasted together.

    """
    if fillvalue is None:
        if f2 is None:
            raise ValueError("One of (fillvalue, f2) must be given.")
        else:
            fillvalue = np.nan
    else:
        if f2 is not None:
            raise ValueError("Only one of (fillvalue, f2) can be given.")

    arrays = np.broadcast_arrays(*arrays)
    temp = tuple(np.extract(cond, arr) for arr in arrays)
    out = valarray(shape(arrays[0]), value=fillvalue)
    np.place(out, cond, f(*temp))
    if f2 is not None:
        temp = tuple(np.extract(~cond, arr) for arr in arrays)
        np.place(out, ~cond, f2(*temp))

    return out


# This should be rewritten
def argsreduce(cond, *args):
    """Return the sequence of ravel(args[i]) where ravel(condition) is
    True in 1D.

    Examples
    --------
    >>> import numpy as np
    >>> rand = np.random.random_sample
    >>> A = rand((4, 5))
    >>> B = 2
    >>> C = rand((1, 5))
    >>> cond = np.ones(A.shape)
    >>> [A1, B1, C1] = argsreduce(cond, A, B, C)
    >>> B1.shape
    (20,)
    >>> cond[2,:] = 0
    >>> [A2, B2, C2] = argsreduce(cond, A, B, C)
    >>> B2.shape
    (15,)

    """
    newargs = np.atleast_1d(*args)
    if not isinstance(newargs, list):
        newargs = [newargs, ]
    expand_arr = (cond == cond)
    return [np.extract(cond, arr1 * expand_arr) for arr1 in newargs]


parse_arg_template = """
def _parse_args(self, %(shape_arg_str)s %(locscale_in)s):
    return (%(shape_arg_str)s), %(locscale_out)s

def _parse_args_rvs(self, %(shape_arg_str)s %(locscale_in)s, size=None):
    return (%(shape_arg_str)s), %(locscale_out)s, size

def _parse_args_stats(self, %(shape_arg_str)s %(locscale_in)s, moments='mv'):
    return (%(shape_arg_str)s), %(locscale_out)s, moments
"""


# Both the continuous and discrete distributions depend on ncx2.
# I think the function name ncx2 is an abbreviation for noncentral chi squared.

def _ncx2_log_pdf(x, df, nc):
    a = asarray(df/2.0)
    fac = -nc/2.0 - x/2.0 + (a-1)*log(x) - a*log(2) - gammaln(a)
    return fac + np.nan_to_num(log(hyp0f1(a, nc * x/4.0)))

def _ncx2_pdf(x, df, nc):
    return np.exp(_ncx2_log_pdf(x, df, nc))

def _ncx2_cdf(x, df, nc):
    return chndtr(x, df, nc)


class rv_generic(object):
    """Class which encapsulates common functionality between rv_discrete
    and rv_continuous.

    """
    def __init__(self):
        super(rv_generic, self).__init__()

        # figure out if _stats signature has 'moments' keyword
        sign = inspect.getargspec(self._stats)
        self._stats_has_moments = ((sign[2] is not None) or
                                   ('moments' in sign[0]))

    def _construct_argparser(self, meths_to_inspect, locscale_in, locscale_out):
        """Construct the parser for the shape arguments.

        Generates the argument-parsing functions dynamically and attaches
        them to the instance.
        Is supposed to be called in __init__ of a class for each distribution.

        If self.shapes is a non-empty string, interprets it as a
        comma-separated list of shape parameters.

        Otherwise inspects the call signatures of `meths_to_inspect`
        and constructs the argument-parsing functions from these.
        In this case also sets `shapes` and `numargs`.
        """

        if self.shapes:
            # sanitize the user-supplied shapes
            if not isinstance(self.shapes, string_types):
                raise TypeError('shapes must be a string.')

            shapes = self.shapes.replace(',', ' ').split()

            for field in shapes:
                if keyword.iskeyword(field):
                    raise SyntaxError('keywords cannot be used as shapes.')
                if not re.match('^[_a-zA-Z][_a-zA-Z0-9]*$', field):
                    raise SyntaxError(
                        'shapes must be valid python identifiers')
        else:
            # find out the call signatures (_pdf, _cdf etc), deduce shape
            # arguments
            shapes_list = []
            for meth in meths_to_inspect:
                shapes_args = inspect.getargspec(meth)
                shapes_list.append(shapes_args.args)

                # *args or **kwargs are not allowed w/automatic shapes
                # (generic methods have 'self, x' only)
                if len(shapes_args.args) > 2:
                    if shapes_args.varargs is not None:
                        raise TypeError(
                            '*args are not allowed w/out explicit shapes')
                    if shapes_args.keywords is not None:
                        raise TypeError(
                            '**kwds are not allowed w/out explicit shapes')
                    if shapes_args.defaults is not None:
                        raise TypeError('defaults are not allowed for shapes')

            shapes = max(shapes_list, key=lambda x: len(x))
            shapes = shapes[2:]  # remove self, x,

            # make sure the signatures are consistent
            # (generic methods have 'self, x' only)
            for item in shapes_list:
                if len(item) > 2 and item[2:] != shapes:
                    raise TypeError('Shape arguments are inconsistent.')

        # have the arguments, construct the method from template
        shapes_str = ', '.join(shapes) + ', ' if shapes else ''  # NB: not None
        dct = dict(shape_arg_str=shapes_str,
                   locscale_in=locscale_in,
                   locscale_out=locscale_out,
                   )
        ns = {}
        exec_(parse_arg_template % dct, ns)
        # NB: attach to the instance, not class
        for name in ['_parse_args', '_parse_args_stats', '_parse_args_rvs']:
            setattr(self, name,
                    instancemethod(ns[name], self, self.__class__)
                    )

        self.shapes = ', '.join(shapes) if shapes else None
        if not hasattr(self, 'numargs'):
            # allows more general subclassing with *args
            self.numargs = len(shapes)

    def _construct_doc(self, docdict, shapes_vals=None):
        """Construct the instance docstring with string substitutions."""
        tempdict = docdict.copy()
        tempdict['name'] = self.name or 'distname'
        tempdict['shapes'] = self.shapes or ''

        if shapes_vals is None:
            shapes_vals = ()
        vals = ', '.join(str(_) for _ in shapes_vals)
        tempdict['vals'] = vals

        if self.shapes:
            tempdict['set_vals_stmt'] = '>>> %s = %s' % (self.shapes, vals)
        else:
            tempdict['set_vals_stmt'] = ''

        if self.shapes is None:
            # remove shapes from call parameters if there are none
            for item in ['callparams', 'default', 'before_notes']:
                tempdict[item] = tempdict[item].replace(
                    "\n%(shapes)s : array_like\n    shape parameters", "")
        for i in range(2):
            if self.shapes is None:
                # necessary because we use %(shapes)s in two forms (w w/o ", ")
                self.__doc__ = self.__doc__.replace("%(shapes)s, ", "")
            self.__doc__ = doccer.docformat(self.__doc__, tempdict)

        # correct for empty shapes
        self.__doc__ = self.__doc__.replace('(, ', '(').replace(', )', ')')

    def freeze(self, *args, **kwds):
        """Freeze the distribution for the given arguments.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution.  Should include all
            the non-optional arguments, may include ``loc`` and ``scale``.

        Returns
        -------
        rv_frozen : rv_frozen instance
            The frozen distribution.

        """
        return rv_frozen(self, *args, **kwds)

    def __call__(self, *args, **kwds):
        return self.freeze(*args, **kwds)

    # The actual calculation functions (no basic checking need be done)
    # If these are defined, the others won't be looked at.
    # Otherwise, the other set can be defined.
    def _stats(self, *args, **kwds):
        return None, None, None, None

    #  Central moments
    def _munp(self, n, *args):
        # Silence floating point warnings from integration.
        olderr = np.seterr(all='ignore')
        vals = self.generic_moment(n, *args)
        np.seterr(**olderr)
        return vals

    ## These are the methods you must define (standard form functions)
    ## NB: generic _pdf, _logpdf, _cdf are different for
    ## rv_continuous and rv_discrete hence are defined in there
    def _argcheck(self, *args):
        """Default check for correct values on args and keywords.

        Returns condition array of 1's where arguments are correct and
         0's where they are not.

        """
        cond = 1
        for arg in args:
            cond = logical_and(cond, (asarray(arg) > 0))
        return cond

    ##(return 1-d using self._size to get number)
    def _rvs(self, *args):
        ## Use basic inverse cdf algorithm for RV generation as default.
        U = mtrand.sample(self._size)
        Y = self._ppf(U, *args)
        return Y

    def _logcdf(self, x, *args):
        return log(self._cdf(x, *args))

    def _sf(self, x, *args):
        return 1.0-self._cdf(x, *args)

    def _logsf(self, x, *args):
        return log(self._sf(x, *args))

    def _ppf(self, q, *args):
        return self._ppfvec(q, *args)

    def _isf(self, q, *args):
        return self._ppf(1.0-q, *args)  # use correct _ppf for subclasses

    # These are actually called, and should not be overwritten if you
    # want to keep error checking.
    def rvs(self, *args, **kwds):
        """
        Random variates of given type.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).
        scale : array_like, optional
            Scale parameter (default=1).
        size : int or tuple of ints, optional
            Defining number of random variates (default=1).

        Returns
        -------
        rvs : ndarray or scalar
            Random variates of given `size`.

        """
        discrete = kwds.pop('discrete', None)
        args, loc, scale, size = self._parse_args_rvs(*args, **kwds)
        cond = logical_and(self._argcheck(*args), (scale >= 0))
        if not np.all(cond):
            raise ValueError("Domain error in arguments.")

        # self._size is total size of all output values
        self._size = product(size, axis=0)
        if self._size is not None and self._size > 1:
            size = np.array(size, ndmin=1)

        if np.all(scale == 0):
            return loc*ones(size, 'd')

        vals = self._rvs(*args)
        if self._size is not None:
            vals = reshape(vals, size)

        vals = vals * scale + loc

        # Cast to int if discrete
        if discrete:
            if np.isscalar(vals):
                vals = int(vals)
            else:
                vals = vals.astype(int)

        return vals

    def stats(self, *args, **kwds):
        """
        Some statistics of the given RV

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional (discrete RVs only)
            scale parameter (default=1)
        moments : str, optional
            composed of letters ['mvsk'] defining which moments to compute:
            'm' = mean,
            'v' = variance,
            's' = (Fisher's) skew,
            'k' = (Fisher's) kurtosis.
            (default='mv')

        Returns
        -------
        stats : sequence
            of requested moments.

        """
        args, loc, scale, moments = self._parse_args_stats(*args, **kwds)
        # scale = 1 by construction for discrete RVs
        loc, scale = map(asarray, (loc, scale))
        args = tuple(map(asarray, args))
        cond = self._argcheck(*args) & (scale > 0) & (loc == loc)
        output = []
        default = valarray(shape(cond), self.badvalue)

        # Use only entries that are valid in calculation
        if any(cond):
            goodargs = argsreduce(cond, *(args+(scale, loc)))
            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]

            if self._stats_has_moments:
                mu, mu2, g1, g2 = self._stats(*goodargs,
                                              **{'moments': moments})
            else:
                mu, mu2, g1, g2 = self._stats(*goodargs)
            if g1 is None:
                mu3 = None
            else:
                if mu2 is None:
                    mu2 = self._munp(2, *goodargs)
                # (mu2**1.5) breaks down for nan and inf
                mu3 = g1 * np.power(mu2, 1.5)

            if 'm' in moments:
                if mu is None:
                    mu = self._munp(1, *goodargs)
                out0 = default.copy()
                place(out0, cond, mu * scale + loc)
                output.append(out0)

            if 'v' in moments:
                if mu2 is None:
                    mu2p = self._munp(2, *goodargs)
                    if mu is None:
                        mu = self._munp(1, *goodargs)
                    mu2 = mu2p - mu * mu
                    if np.isinf(mu):
                        #if mean is inf then var is also inf
                        mu2 = np.inf
                out0 = default.copy()
                place(out0, cond, mu2 * scale * scale)
                output.append(out0)

            if 's' in moments:
                if g1 is None:
                    mu3p = self._munp(3, *goodargs)
                    if mu is None:
                        mu = self._munp(1, *goodargs)
                    if mu2 is None:
                        mu2p = self._munp(2, *goodargs)
                        mu2 = mu2p - mu * mu
                    mu3 = mu3p - 3 * mu * mu2 - mu**3
                    g1 = mu3 / np.power(mu2, 1.5)
                out0 = default.copy()
                place(out0, cond, g1)
                output.append(out0)

            if 'k' in moments:
                if g2 is None:
                    mu4p = self._munp(4, *goodargs)
                    if mu is None:
                        mu = self._munp(1, *goodargs)
                    if mu2 is None:
                        mu2p = self._munp(2, *goodargs)
                        mu2 = mu2p - mu * mu
                    if mu3 is None:
                        mu3p = self._munp(3, *goodargs)
                        mu3 = mu3p - 3 * mu * mu2 - mu**3
                    mu4 = mu4p - 4 * mu * mu3 - 6 * mu * mu * mu2 - mu**4
                    g2 = mu4 / mu2**2.0 - 3.0
                out0 = default.copy()
                place(out0, cond, g2)
                output.append(out0)
        else:  # no valid args
            output = []
            for _ in moments:
                out0 = default.copy()
                output.append(out0)

        if len(output) == 1:
            return output[0]
        else:
            return tuple(output)

    def entropy(self, *args, **kwds):
        """
        Differential entropy of the RV.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).
        scale : array_like, optional  (continuous distributions only).
            Scale parameter (default=1).

        Notes
        -----
        Entropy is defined base `e`:

        >>> drv = rv_discrete(values=((0, 1), (0.5, 0.5)))
        >>> np.allclose(drv.entropy(), np.log(2.0))
        True

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        # NB: for discrete distributions scale=1 by construction in _parse_args
        args = tuple(map(asarray, args))
        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
        output = zeros(shape(cond0), 'd')
        place(output, (1-cond0), self.badvalue)
        goodargs = argsreduce(cond0, *args)
        # I don't know when or why vecentropy got broken when numargs == 0
        # 09.08.2013: is this still relevant? cf check_vecentropy test
        # in tests/test_continuous_basic.py
        if self.numargs == 0:
            place(output, cond0, self._entropy() + log(scale))
        else:
            place(output, cond0, self.vecentropy(*goodargs) + log(scale))
        return output

    def moment(self, n, *args, **kwds):
        """
        n'th order non-central moment of distribution.

        Parameters
        ----------
        n : int, n>=1
            Order of moment.
        arg1, arg2, arg3,... : float
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        kwds : keyword arguments, optional
            These can include "loc" and "scale", as well as other keyword
            arguments relevant for a given distribution.

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        if not (self._argcheck(*args) and (scale > 0)):
            return nan
        if (floor(n) != n):
            raise ValueError("Moment must be an integer.")
        if (n < 0):
            raise ValueError("Moment must be positive.")
        mu, mu2, g1, g2 = None, None, None, None
        if (n > 0) and (n < 5):
            if self._stats_has_moments:
                mdict = {'moments': {1: 'm', 2: 'v', 3: 'vs', 4: 'vk'}[n]}
            else:
                mdict = {}
            mu, mu2, g1, g2 = self._stats(*args, **mdict)
        val = _moment_from_stats(n, mu, mu2, g1, g2, self._munp, args)

        # Convert to transformed  X = L + S*Y
        # E[X^n] = E[(L+S*Y)^n] = L^n sum(comb(n, k)*(S/L)^k E[Y^k], k=0...n)
        if loc == 0:
            return scale**n * val
        else:
            result = 0
            fac = float(scale) / float(loc)
            for k in range(n):
                valk = _moment_from_stats(k, mu, mu2, g1, g2, self._munp, args)
                result += comb(n, k, exact=True)*(fac**k) * valk
            result += fac**n * val
            return result * loc**n

    def median(self, *args, **kwds):
        """
        Median of the distribution.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            Location parameter, Default is 0.
        scale : array_like, optional
            Scale parameter, Default is 1.

        Returns
        -------
        median : float
            The median of the distribution.

        See Also
        --------
        stats.distributions.rv_discrete.ppf
            Inverse of the CDF

        """
        return self.ppf(0.5, *args, **kwds)

    def mean(self, *args, **kwds):
        """
        Mean of the distribution

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        mean : float
            the mean of the distribution
        """
        kwds['moments'] = 'm'
        res = self.stats(*args, **kwds)
        if isinstance(res, ndarray) and res.ndim == 0:
            return res[()]
        return res

    def var(self, *args, **kwds):
        """
        Variance of the distribution

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        var : float
            the variance of the distribution

        """
        kwds['moments'] = 'v'
        res = self.stats(*args, **kwds)
        if isinstance(res, ndarray) and res.ndim == 0:
            return res[()]
        return res

    def std(self, *args, **kwds):
        """
        Standard deviation of the distribution.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        std : float
            standard deviation of the distribution

        """
        kwds['moments'] = 'v'
        res = sqrt(self.stats(*args, **kwds))
        return res

    def interval(self, alpha, *args, **kwds):
        """
        Confidence interval with equal areas around the median.

        Parameters
        ----------
        alpha : array_like of float
            Probability that an rv will be drawn from the returned range.
            Each value should be in the range [0, 1].
        arg1, arg2, ... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            location parameter, Default is 0.
        scale : array_like, optional
            scale parameter, Default is 1.

        Returns
        -------
        a, b : ndarray of float
            end-points of range that contain ``100 * alpha %`` of the rv's
            possible values.

        """
        alpha = asarray(alpha)
        if any((alpha > 1) | (alpha < 0)):
            raise ValueError("alpha must be between 0 and 1 inclusive")
        q1 = (1.0-alpha)/2
        q2 = (1.0+alpha)/2
        a = self.ppf(q1, *args, **kwds)
        b = self.ppf(q2, *args, **kwds)
        return a, b


##  continuous random variables: implement maybe later
##
##  hf  --- Hazard Function (PDF / SF)
##  chf  --- Cumulative hazard function (-log(SF))
##  psf --- Probability sparsity function (reciprocal of the pdf) in
##                units of percent-point-function (as a function of q).
##                Also, the derivative of the percent-point function.

class rv_continuous(rv_generic):
    """
    A generic continuous random variable class meant for subclassing.

    `rv_continuous` is a base class to construct specific distribution classes
    and instances from for continuous random variables. It cannot be used
    directly as a distribution.

    Parameters
    ----------
    momtype : int, optional
        The type of generic moment calculation to use: 0 for pdf, 1 (default)
        for ppf.
    a : float, optional
        Lower bound of the support of the distribution, default is minus
        infinity.
    b : float, optional
        Upper bound of the support of the distribution, default is plus
        infinity.
    xtol : float, optional
        The tolerance for fixed point calculation for generic ppf.
    badvalue : object, optional
        The value in a result arrays that indicates a value that for which
        some argument restriction is violated, default is np.nan.
    name : str, optional
        The name of the instance. This string is used to construct the default
        example for distributions.
    longname : str, optional
        This string is used as part of the first line of the docstring returned
        when a subclass has no docstring of its own. Note: `longname` exists
        for backwards compatibility, do not use for new subclasses.
    shapes : str, optional
        The shape of the distribution. For example ``"m, n"`` for a
        distribution that takes two integers as the two shape arguments for all
        its methods.
    extradoc :  str, optional, deprecated
        This string is used as the last part of the docstring returned when a
        subclass has no docstring of its own. Note: `extradoc` exists for
        backwards compatibility, do not use for new subclasses.

    Methods
    -------
    rvs(<shape(s)>, loc=0, scale=1, size=1)
        random variates

    pdf(x, <shape(s)>, loc=0, scale=1)
        probability density function

    logpdf(x, <shape(s)>, loc=0, scale=1)
        log of the probability density function

    cdf(x, <shape(s)>, loc=0, scale=1)
        cumulative density function

    logcdf(x, <shape(s)>, loc=0, scale=1)
        log of the cumulative density function

    sf(x, <shape(s)>, loc=0, scale=1)
        survival function (1-cdf --- sometimes more accurate)

    logsf(x, <shape(s)>, loc=0, scale=1)
        log of the survival function

    ppf(q, <shape(s)>, loc=0, scale=1)
      percent point function (inverse of cdf --- quantiles)

    isf(q, <shape(s)>, loc=0, scale=1)
        inverse survival function (inverse of sf)

    moment(n, <shape(s)>, loc=0, scale=1)
        non-central n-th moment of the distribution.  May not work for array
        arguments.

    stats(<shape(s)>, loc=0, scale=1, moments='mv')
        mean('m'), variance('v'), skew('s'), and/or kurtosis('k')

    entropy(<shape(s)>, loc=0, scale=1)
        (differential) entropy of the RV.

    fit(data, <shape(s)>, loc=0, scale=1)
        Parameter estimates for generic data

    expect(func=None, args=(), loc=0, scale=1, lb=None, ub=None,
             conditional=False, **kwds)
        Expected value of a function with respect to the distribution.
        Additional kwd arguments passed to integrate.quad

    median(<shape(s)>, loc=0, scale=1)
        Median of the distribution.

    mean(<shape(s)>, loc=0, scale=1)
        Mean of the distribution.

    std(<shape(s)>, loc=0, scale=1)
        Standard deviation of the distribution.

    var(<shape(s)>, loc=0, scale=1)
        Variance of the distribution.

    interval(alpha, <shape(s)>, loc=0, scale=1)
        Interval that with `alpha` percent probability contains a random
        realization of this distribution.

    __call__(<shape(s)>, loc=0, scale=1)
        Calling a distribution instance creates a frozen RV object with the
        same methods but holding the given shape, location, and scale fixed.
        See Notes section.

    **Parameters for Methods**

    x : array_like
        quantiles
    q : array_like
        lower or upper tail probability
    <shape(s)> : array_like
        shape parameters
    loc : array_like, optional
        location parameter (default=0)
    scale : array_like, optional
        scale parameter (default=1)
    size : int or tuple of ints, optional
        shape of random variates (default computed from input arguments )
    moments : string, optional
        composed of letters ['mvsk'] specifying which moments to compute where
        'm' = mean, 'v' = variance, 's' = (Fisher's) skew and
        'k' = (Fisher's) kurtosis. (default='mv')
    n : int
        order of moment to calculate in method moments

    Notes
    -----

    **Methods that can be overwritten by subclasses**
    ::

      _rvs
      _pdf
      _cdf
      _sf
      _ppf
      _isf
      _stats
      _munp
      _entropy
      _argcheck

    There are additional (internal and private) generic methods that can
    be useful for cross-checking and for debugging, but might work in all
    cases when directly called.

    **Frozen Distribution**

    Alternatively, the object may be called (as a function) to fix the shape,
    location, and scale parameters returning a "frozen" continuous RV object:

    rv = generic(<shape(s)>, loc=0, scale=1)
        frozen RV object with the same methods but holding the given shape,
        location, and scale fixed

    **Subclassing**

    New random variables can be defined by subclassing rv_continuous class
    and re-defining at least the ``_pdf`` or the ``_cdf`` method (normalized
    to location 0 and scale 1) which will be given clean arguments (in between
    a and b) and passing the argument check method.

    If positive argument checking is not correct for your RV
    then you will also need to re-define the ``_argcheck`` method.

    Correct, but potentially slow defaults exist for the remaining
    methods but for speed and/or accuracy you can over-ride::

      _logpdf, _cdf, _logcdf, _ppf, _rvs, _isf, _sf, _logsf

    Rarely would you override ``_isf``, ``_sf`` or ``_logsf``, but you could.

    Statistics are computed using numerical integration by default.
    For speed you can redefine this using ``_stats``:

     - take shape parameters and return mu, mu2, g1, g2
     - If you can't compute one of these, return it as None
     - Can also be defined with a keyword argument ``moments=<str>``,
       where <str> is a string composed of 'm', 'v', 's',
       and/or 'k'.  Only the components appearing in string
       should be computed and returned in the order 'm', 'v',
       's', or 'k'  with missing values returned as None.

    Alternatively, you can override ``_munp``, which takes n and shape
    parameters and returns the nth non-central moment of the distribution.

    A note on ``shapes``: subclasses need not specify them explicitly. In this
    case, the `shapes` will be automatically deduced from the signatures of the
    overridden methods.
    If, for some reason, you prefer to avoid relying on introspection, you can
    specify ``shapes`` explicitly as an argument to the instance constructor.

    Examples
    --------
    To create a new Gaussian distribution, we would do the following::

        class gaussian_gen(rv_continuous):
            "Gaussian distribution"
            def _pdf(self, x):
                ...
            ...

    """

    def __init__(self, momtype=1, a=None, b=None, xtol=1e-14,
                 badvalue=None, name=None, longname=None,
                 shapes=None, extradoc=None):

        super(rv_continuous, self).__init__()

        # save the ctor parameters, cf generic freeze
        self._ctor_param = dict(momtype=momtype, a=a, b=b, xtol=xtol,
                badvalue=badvalue, name=name, longname=longname,
                shapes=shapes, extradoc=extradoc)

        if badvalue is None:
            badvalue = nan
        if name is None:
            name = 'Distribution'
        self.badvalue = badvalue
        self.name = name
        self.a = a
        self.b = b
        if a is None:
            self.a = -inf
        if b is None:
            self.b = inf
        self.xtol = xtol
        self._size = 1
        self.moment_type = momtype
        self.shapes = shapes
        self._construct_argparser(meths_to_inspect=[self._pdf, self._cdf],
                                  locscale_in='loc=0, scale=1',
                                  locscale_out='loc, scale')

        # nin correction
        self._ppfvec = vectorize(self._ppf_single, otypes='d')
        self._ppfvec.nin = self.numargs + 1
        self.vecentropy = vectorize(self._entropy, otypes='d')
        self._cdfvec = vectorize(self._cdf_single, otypes='d')
        self._cdfvec.nin = self.numargs + 1

        # backwards compat.  these were removed in 0.14.0, put back but
        # deprecated in 0.14.1:
        self.vecfunc = np.deprecate(self._ppfvec, "vecfunc")
        self.veccdf = np.deprecate(self._cdfvec, "veccdf")

        self.extradoc = extradoc
        if momtype == 0:
            self.generic_moment = vectorize(self._mom0_sc, otypes='d')
        else:
            self.generic_moment = vectorize(self._mom1_sc, otypes='d')
        # Because of the *args argument of _mom0_sc, vectorize cannot count the
        # number of arguments correctly.
        self.generic_moment.nin = self.numargs + 1

        if longname is None:
            if name[0] in ['aeiouAEIOU']:
                hstr = "An "
            else:
                hstr = "A "
            longname = hstr + name

        if sys.flags.optimize < 2:
            # Skip adding docstrings if interpreter is run with -OO
            if self.__doc__ is None:
                self._construct_default_doc(longname=longname,
                                            extradoc=extradoc)
            else:
                dct = dict(distcont)
                self._construct_doc(docdict, dct.get(self.name))

    def _construct_default_doc(self, longname=None, extradoc=None):
        """Construct instance docstring from the default template."""
        if longname is None:
            longname = 'A'
        if extradoc is None:
            extradoc = ''
        if extradoc.startswith('\n\n'):
            extradoc = extradoc[2:]
        self.__doc__ = ''.join(['%s continuous random variable.' % longname,
                                '\n\n%(before_notes)s\n', docheaders['notes'],
                                extradoc, '\n%(example)s'])
        self._construct_doc(docdict)

    def _ppf_to_solve(self, x, q, *args):
        return self.cdf(*(x, )+args)-q

    def _ppf_single(self, q, *args):
        left = right = None
        if self.a > -np.inf:
            left = self.a
        if self.b < np.inf:
            right = self.b

        factor = 10.
        if not left:  # i.e. self.a = -inf
            left = -1.*factor
            while self._ppf_to_solve(left, q, *args) > 0.:
                right = left
                left *= factor
            # left is now such that cdf(left) < q
        if not right:  # i.e. self.b = inf
            right = factor
            while self._ppf_to_solve(right, q, *args) < 0.:
                left = right
                right *= factor
            # right is now such that cdf(right) > q

        return optimize.brentq(self._ppf_to_solve,
                               left, right, args=(q,)+args, xtol=self.xtol)

    # moment from definition
    def _mom_integ0(self, x, m, *args):
        return x**m * self.pdf(x, *args)

    def _mom0_sc(self, m, *args):
        return integrate.quad(self._mom_integ0, self.a, self.b,
                              args=(m,)+args)[0]

    # moment calculated using ppf
    def _mom_integ1(self, q, m, *args):
        return (self.ppf(q, *args))**m

    def _mom1_sc(self, m, *args):
        return integrate.quad(self._mom_integ1, 0, 1, args=(m,)+args)[0]

    def _pdf(self, x, *args):
        return derivative(self._cdf, x, dx=1e-5, args=args, order=5)

    ## Could also define any of these
    def _logpdf(self, x, *args):
        return log(self._pdf(x, *args))

    def _cdf_single(self, x, *args):
        return integrate.quad(self._pdf, self.a, x, args=args)[0]

    def _cdf(self, x, *args):
        return self._cdfvec(x, *args)

    ## generic _argcheck, _logcdf, _sf, _logsf, _ppf, _isf, _rvs are defined
    ## in rv_generic

    def pdf(self, x, *args, **kwds):
        """
        Probability density function at x of the given RV.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        pdf : ndarray
            Probability density function evaluated at x

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        x = asarray((x-loc)*1.0/scale)
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = (scale > 0) & (x >= self.a) & (x <= self.b)
        cond = cond0 & cond1
        output = zeros(shape(cond), 'd')
        putmask(output, (1-cond0)+np.isnan(x), self.badvalue)
        if any(cond):
            goodargs = argsreduce(cond, *((x,)+args+(scale,)))
            scale, goodargs = goodargs[-1], goodargs[:-1]
            place(output, cond, self._pdf(*goodargs) / scale)
        if output.ndim == 0:
            return output[()]
        return output

    def logpdf(self, x, *args, **kwds):
        """
        Log of the probability density function at x of the given RV.

        This uses a more numerically accurate calculation if available.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        logpdf : array_like
            Log of the probability density function evaluated at x

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        x = asarray((x-loc)*1.0/scale)
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = (scale > 0) & (x >= self.a) & (x <= self.b)
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(NINF)
        putmask(output, (1-cond0)+np.isnan(x), self.badvalue)
        if any(cond):
            goodargs = argsreduce(cond, *((x,)+args+(scale,)))
            scale, goodargs = goodargs[-1], goodargs[:-1]
            place(output, cond, self._logpdf(*goodargs) - log(scale))
        if output.ndim == 0:
            return output[()]
        return output

    def cdf(self, x, *args, **kwds):
        """
        Cumulative distribution function of the given RV.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        cdf : ndarray
            Cumulative distribution function evaluated at `x`

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        x = (x-loc)*1.0/scale
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = (scale > 0) & (x > self.a) & (x < self.b)
        cond2 = (x >= self.b) & cond0
        cond = cond0 & cond1
        output = zeros(shape(cond), 'd')
        place(output, (1-cond0)+np.isnan(x), self.badvalue)
        place(output, cond2, 1.0)
        if any(cond):  # call only if at least 1 entry
            goodargs = argsreduce(cond, *((x,)+args))
            place(output, cond, self._cdf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def logcdf(self, x, *args, **kwds):
        """
        Log of the cumulative distribution function at x of the given RV.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        logcdf : array_like
            Log of the cumulative distribution function evaluated at x

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        x = (x-loc)*1.0/scale
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = (scale > 0) & (x > self.a) & (x < self.b)
        cond2 = (x >= self.b) & cond0
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(NINF)
        place(output, (1-cond0)*(cond1 == cond1)+np.isnan(x), self.badvalue)
        place(output, cond2, 0.0)
        if any(cond):  # call only if at least 1 entry
            goodargs = argsreduce(cond, *((x,)+args))
            place(output, cond, self._logcdf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def sf(self, x, *args, **kwds):
        """
        Survival function (1-cdf) at x of the given RV.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        sf : array_like
            Survival function evaluated at x

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        x = (x-loc)*1.0/scale
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = (scale > 0) & (x > self.a) & (x < self.b)
        cond2 = cond0 & (x <= self.a)
        cond = cond0 & cond1
        output = zeros(shape(cond), 'd')
        place(output, (1-cond0)+np.isnan(x), self.badvalue)
        place(output, cond2, 1.0)
        if any(cond):
            goodargs = argsreduce(cond, *((x,)+args))
            place(output, cond, self._sf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def logsf(self, x, *args, **kwds):
        """
        Log of the survival function of the given RV.

        Returns the log of the "survival function," defined as (1 - `cdf`),
        evaluated at `x`.

        Parameters
        ----------
        x : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        logsf : ndarray
            Log of the survival function evaluated at `x`.

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        x, loc, scale = map(asarray, (x, loc, scale))
        args = tuple(map(asarray, args))
        x = (x-loc)*1.0/scale
        cond0 = self._argcheck(*args) & (scale > 0)
        cond1 = (scale > 0) & (x > self.a) & (x < self.b)
        cond2 = cond0 & (x <= self.a)
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(NINF)
        place(output, (1-cond0)+np.isnan(x), self.badvalue)
        place(output, cond2, 0.0)
        if any(cond):
            goodargs = argsreduce(cond, *((x,)+args))
            place(output, cond, self._logsf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def ppf(self, q, *args, **kwds):
        """
        Percent point function (inverse of cdf) at q of the given RV.

        Parameters
        ----------
        q : array_like
            lower tail probability
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        x : array_like
            quantile corresponding to the lower tail probability q.

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        q, loc, scale = map(asarray, (q, loc, scale))
        args = tuple(map(asarray, args))
        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
        cond1 = (0 < q) & (q < 1)
        cond2 = cond0 & (q == 0)
        cond3 = cond0 & (q == 1)
        cond = cond0 & cond1
        output = valarray(shape(cond), value=self.badvalue)

        lower_bound = self.a * scale + loc
        upper_bound = self.b * scale + loc
        place(output, cond2, argsreduce(cond2, lower_bound)[0])
        place(output, cond3, argsreduce(cond3, upper_bound)[0])

        if any(cond):  # call only if at least 1 entry
            goodargs = argsreduce(cond, *((q,)+args+(scale, loc)))
            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
            place(output, cond, self._ppf(*goodargs) * scale + loc)
        if output.ndim == 0:
            return output[()]
        return output

    def isf(self, q, *args, **kwds):
        """
        Inverse survival function at q of the given RV.

        Parameters
        ----------
        q : array_like
            upper tail probability
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            location parameter (default=0)
        scale : array_like, optional
            scale parameter (default=1)

        Returns
        -------
        x : ndarray or scalar
            Quantile corresponding to the upper tail probability q.

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        q, loc, scale = map(asarray, (q, loc, scale))
        args = tuple(map(asarray, args))
        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
        cond1 = (0 < q) & (q < 1)
        cond2 = cond0 & (q == 1)
        cond3 = cond0 & (q == 0)
        cond = cond0 & cond1
        output = valarray(shape(cond), value=self.badvalue)

        lower_bound = self.a * scale + loc
        upper_bound = self.b * scale + loc
        place(output, cond2, argsreduce(cond2, lower_bound)[0])
        place(output, cond3, argsreduce(cond3, upper_bound)[0])

        if any(cond):
            goodargs = argsreduce(cond, *((q,)+args+(scale, loc)))
            scale, loc, goodargs = goodargs[-2], goodargs[-1], goodargs[:-2]
            place(output, cond, self._isf(*goodargs) * scale + loc)
        if output.ndim == 0:
            return output[()]
        return output

    def _nnlf(self, x, *args):
        return -sum(self._logpdf(x, *args), axis=0)

    def nnlf(self, theta, x):
        '''Return negative loglikelihood function

        Notes
        -----
        This is ``-sum(log pdf(x, theta), axis=0)`` where theta are the
        parameters (including loc and scale).
        '''
        try:
            loc = theta[-2]
            scale = theta[-1]
            args = tuple(theta[:-2])
        except IndexError:
            raise ValueError("Not enough input arguments.")
        if not self._argcheck(*args) or scale <= 0:
            return inf
        x = asarray((x-loc) / scale)
        cond0 = (x <= self.a) | (self.b <= x)
        if (any(cond0)):
            return inf
        else:
            N = len(x)
            return self._nnlf(x, *args) + N * log(scale)

    def _penalized_nnlf(self, theta, x):
        ''' Return negative loglikelihood function,
        i.e., - sum (log pdf(x, theta), axis=0)
           where theta are the parameters (including loc and scale)
        '''
        try:
            loc = theta[-2]
            scale = theta[-1]
            args = tuple(theta[:-2])
        except IndexError:
            raise ValueError("Not enough input arguments.")
        if not self._argcheck(*args) or scale <= 0:
            return inf
        x = asarray((x-loc) / scale)

        loginf = log(_XMAX)

        if np.isneginf(self.a).all() and np.isinf(self.b).all():
            Nbad = 0
        else:
            cond0 = (x <= self.a) | (self.b <= x)
            Nbad = sum(cond0)
            if Nbad > 0:
                x = argsreduce(~cond0, x)[0]

        N = len(x)
        return self._nnlf(x, *args) + N*log(scale) + Nbad * 100.0 * loginf

    # return starting point for fit (shape arguments + loc + scale)
    def _fitstart(self, data, args=None):
        if args is None:
            args = (1.0,)*self.numargs
        return args + self.fit_loc_scale(data, *args)

    # Return the (possibly reduced) function to optimize in order to find MLE
    #  estimates for the .fit method
    def _reduce_func(self, args, kwds):
        args = list(args)
        Nargs = len(args)
        fixedn = []
        index = list(range(Nargs))
        names = ['f%d' % n for n in range(Nargs - 2)] + ['floc', 'fscale']
        x0 = []
        for n, key in zip(index, names):
            if key in kwds:
                fixedn.append(n)
                args[n] = kwds[key]
            else:
                x0.append(args[n])

        if len(fixedn) == 0:
            func = self._penalized_nnlf
            restore = None
        else:
            if len(fixedn) == len(index):
                raise ValueError("All parameters fixed. There is nothing to optimize.")

            def restore(args, theta):
                # Replace with theta for all numbers not in fixedn
                # This allows the non-fixed values to vary, but
                #  we still call self.nnlf with all parameters.
                i = 0
                for n in range(Nargs):
                    if n not in fixedn:
                        args[n] = theta[i]
                        i += 1
                return args

            def func(theta, x):
                newtheta = restore(args[:], theta)
                return self._penalized_nnlf(newtheta, x)

        return x0, func, restore, args

    def fit(self, data, *args, **kwds):
        """
        Return MLEs for shape, location, and scale parameters from data.

        MLE stands for Maximum Likelihood Estimate.  Starting estimates for
        the fit are given by input arguments; for any arguments not provided
        with starting estimates, ``self._fitstart(data)`` is called to generate
        such.

        One can hold some parameters fixed to specific values by passing in
        keyword arguments ``f0``, ``f1``, ..., ``fn`` (for shape parameters)
        and ``floc`` and ``fscale`` (for location and scale parameters,
        respectively).

        Parameters
        ----------
        data : array_like
            Data to use in calculating the MLEs.
        args : floats, optional
            Starting value(s) for any shape-characterizing arguments (those not
            provided will be determined by a call to ``_fitstart(data)``).
            No default value.
        kwds : floats, optional
            Starting values for the location and scale parameters; no default.
            Special keyword arguments are recognized as holding certain
            parameters fixed:

            f0...fn : hold respective shape parameters fixed.

            floc : hold location parameter fixed to specified value.

            fscale : hold scale parameter fixed to specified value.

            optimizer : The optimizer to use.  The optimizer must take func,
                        and starting position as the first two arguments,
                        plus args (for extra arguments to pass to the
                        function to be optimized) and disp=0 to suppress
                        output as keyword arguments.

        Returns
        -------
        shape, loc, scale : tuple of floats
            MLEs for any shape statistics, followed by those for location and
            scale.

        Notes
        -----
        This fit is computed by maximizing a log-likelihood function, with
        penalty applied for samples outside of range of the distribution. The
        returned answer is not guaranteed to be the globally optimal MLE, it
        may only be locally optimal, or the optimization may fail altogether.
        """
        Narg = len(args)
        if Narg > self.numargs:
            raise TypeError("Too many input arguments.")

        start = [None]*2
        if (Narg < self.numargs) or not ('loc' in kwds and
                                         'scale' in kwds):
            # get distribution specific starting locations
            start = self._fitstart(data)
            args += start[Narg:-2]
        loc = kwds.get('loc', start[-2])
        scale = kwds.get('scale', start[-1])
        args += (loc, scale)
        x0, func, restore, args = self._reduce_func(args, kwds)

        optimizer = kwds.get('optimizer', optimize.fmin)
        # convert string to function in scipy.optimize
        if not callable(optimizer) and isinstance(optimizer, string_types):
            if not optimizer.startswith('fmin_'):
                optimizer = "fmin_"+optimizer
            if optimizer == 'fmin_':
                optimizer = 'fmin'
            try:
                optimizer = getattr(optimize, optimizer)
            except AttributeError:
                raise ValueError("%s is not a valid optimizer" % optimizer)
        vals = optimizer(func, x0, args=(ravel(data),), disp=0)
        if restore is not None:
            vals = restore(args, vals)
        vals = tuple(vals)
        return vals

    def fit_loc_scale(self, data, *args):
        """
        Estimate loc and scale parameters from data using 1st and 2nd moments.

        Parameters
        ----------
        data : array_like
            Data to fit.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).

        Returns
        -------
        Lhat : float
            Estimated location parameter for the data.
        Shat : float
            Estimated scale parameter for the data.

        """
        mu, mu2 = self.stats(*args, **{'moments': 'mv'})
        tmp = asarray(data)
        muhat = tmp.mean()
        mu2hat = tmp.var()
        Shat = sqrt(mu2hat / mu2)
        Lhat = muhat - Shat*mu
        if not np.isfinite(Lhat):
            Lhat = 0
        if not (np.isfinite(Shat) and (0 < Shat)):
            Shat = 1
        return Lhat, Shat

    @np.deprecate
    def est_loc_scale(self, data, *args):
        """This function is deprecated, use self.fit_loc_scale(data) instead.
        """
        return self.fit_loc_scale(data, *args)

    def _entropy(self, *args):
        def integ(x):
            val = self._pdf(x, *args)
            return xlogy(val, val)

        # upper limit is often inf, so suppress warnings when integrating
        olderr = np.seterr(over='ignore')
        entr = -integrate.quad(integ, self.a, self.b)[0]
        np.seterr(**olderr)

        if not np.isnan(entr):
            return entr
        else:
            # try with different limits if integration problems
            low, upp = self.ppf([1e-10, 1. - 1e-10], *args)
            if np.isinf(self.b):
                upper = upp
            else:
                upper = self.b
            if np.isinf(self.a):
                lower = low
            else:
                lower = self.a
            return -integrate.quad(integ, lower, upper)[0]

    def entropy(self, *args, **kwds):
        """
        Differential entropy of the RV.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).
        scale : array_like, optional
            Scale parameter (default=1).

        """
        args, loc, scale = self._parse_args(*args, **kwds)
        args = tuple(map(asarray, args))
        cond0 = self._argcheck(*args) & (scale > 0) & (loc == loc)
        output = zeros(shape(cond0), 'd')
        place(output, (1-cond0), self.badvalue)
        goodargs = argsreduce(cond0, *args)
        # np.vectorize doesn't work when numargs == 0 in numpy 1.5.1
        if self.numargs == 0:
            place(output, cond0, self._entropy() + log(scale))
        else:
            place(output, cond0, self.vecentropy(*goodargs) + log(scale))

        return output

    def expect(self, func=None, args=(), loc=0, scale=1, lb=None, ub=None,
               conditional=False, **kwds):
        """Calculate expected value of a function with respect to the
        distribution.

        The expected value of a function ``f(x)`` with respect to a
        distribution ``dist`` is defined as::

                    ubound
            E[x] = Integral(f(x) * dist.pdf(x))
                    lbound

        Parameters
        ----------
        func : callable, optional
            Function for which integral is calculated. Takes only one argument.
            The default is the identity mapping f(x) = x.
        args : tuple, optional
            Argument (parameters) of the distribution.
        lb, ub : scalar, optional
            Lower and upper bound for integration. default is set to the
            support of the distribution.
        conditional : bool, optional
            If True, the integral is corrected by the conditional probability
            of the integration interval.  The return value is the expectation
            of the function, conditional on being in the given interval.
            Default is False.

        Additional keyword arguments are passed to the integration routine.

        Returns
        -------
        expect : float
            The calculated expected value.

        Notes
        -----
        The integration behavior of this function is inherited from
        `integrate.quad`.

        """
        lockwds = {'loc': loc,
                   'scale': scale}
        self._argcheck(*args)
        if func is None:
            def fun(x, *args):
                return x * self.pdf(x, *args, **lockwds)
        else:
            def fun(x, *args):
                return func(x) * self.pdf(x, *args, **lockwds)
        if lb is None:
            lb = loc + self.a * scale
        if ub is None:
            ub = loc + self.b * scale
        if conditional:
            invfac = (self.sf(lb, *args, **lockwds)
                      - self.sf(ub, *args, **lockwds))
        else:
            invfac = 1.0
        kwds['args'] = args
        # Silence floating point warnings from integration.
        olderr = np.seterr(all='ignore')
        vals = integrate.quad(fun, lb, ub, **kwds)[0] / invfac
        np.seterr(**olderr)
        return vals


## Handlers for generic case where xk and pk are given
## The _drv prefix probably means discrete random variable.

def _drv_pmf(self, xk, *args):
    try:
        return self.P[xk]
    except KeyError:
        return 0.0


def _drv_cdf(self, xk, *args):
    indx = argmax((self.xk > xk), axis=-1)-1
    return self.F[self.xk[indx]]


def _drv_ppf(self, q, *args):
    indx = argmax((self.qvals >= q), axis=-1)
    return self.Finv[self.qvals[indx]]


def _drv_nonzero(self, k, *args):
    return 1


def _drv_moment(self, n, *args):
    n = asarray(n)
    return sum(self.xk**n[np.newaxis,...] * self.pk, axis=0)


def _drv_moment_gen(self, t, *args):
    t = asarray(t)
    return sum(exp(self.xk * t[np.newaxis,...]) * self.pk, axis=0)


def _drv2_moment(self, n, *args):
    """Non-central moment of discrete distribution."""
    # many changes, originally not even a return
    tot = 0.0
    diff = 1e100
    # pos = self.a
    pos = max(0.0, 1.0*self.a)
    count = 0
    # handle cases with infinite support
    ulimit = max(1000, (min(self.b, 1000) + max(self.a, -1000))/2.0)
    llimit = min(-1000, (min(self.b, 1000) + max(self.a, -1000))/2.0)

    while (pos <= self.b) and ((pos <= ulimit) or
                               (diff > self.moment_tol)):
        diff = np.power(pos, n) * self.pmf(pos, *args)
        # use pmf because _pmf does not check support in randint and there
        # might be problems ? with correct self.a, self.b at this stage
        tot += diff
        pos += self.inc
        count += 1

    if self.a < 0:  # handle case when self.a = -inf
        diff = 1e100
        pos = -self.inc
        while (pos >= self.a) and ((pos >= llimit) or
                                   (diff > self.moment_tol)):
            diff = np.power(pos, n) * self.pmf(pos, *args)
            # using pmf instead of _pmf, see above
            tot += diff
            pos -= self.inc
            count += 1
    return tot


def _drv2_ppfsingle(self, q, *args):  # Use basic bisection algorithm
    b = self.b
    a = self.a
    if isinf(b):            # Be sure ending point is > q
        b = int(max(100*q, 10))
        while 1:
            if b >= self.b:
                qb = 1.0
                break
            qb = self._cdf(b, *args)
            if (qb < q):
                b += 10
            else:
                break
    else:
        qb = 1.0
    if isinf(a):    # be sure starting point < q
        a = int(min(-100*q, -10))
        while 1:
            if a <= self.a:
                qb = 0.0
                break
            qa = self._cdf(a, *args)
            if (qa > q):
                a -= 10
            else:
                break
    else:
        qa = self._cdf(a, *args)

    while 1:
        if (qa == q):
            return a
        if (qb == q):
            return b
        if b <= a+1:
    # testcase: return wrong number at lower index
    # python -c "from scipy.stats import zipf;print zipf.ppf(0.01, 2)" wrong
    # python -c "from scipy.stats import zipf;print zipf.ppf([0.01, 0.61, 0.77, 0.83], 2)"
    # python -c "from scipy.stats import logser;print logser.ppf([0.1, 0.66, 0.86, 0.93], 0.6)"
            if qa > q:
                return a
            else:
                return b
        c = int((a+b)/2.0)
        qc = self._cdf(c, *args)
        if (qc < q):
            if a != c:
                a = c
            else:
                raise RuntimeError('updating stopped, endless loop')
            qa = qc
        elif (qc > q):
            if b != c:
                b = c
            else:
                raise RuntimeError('updating stopped, endless loop')
            qb = qc
        else:
            return c


def entropy(pk, qk=None, base=None):
    """Calculate the entropy of a distribution for given probability values.

    If only probabilities `pk` are given, the entropy is calculated as
    ``S = -sum(pk * log(pk), axis=0)``.

    If `qk` is not None, then compute a relative entropy (also known as
    Kullback-Leibler divergence or Kullback-Leibler distance)
    ``S = sum(pk * log(pk / qk), axis=0)``.

    This routine will normalize `pk` and `qk` if they don't sum to 1.

    Parameters
    ----------
    pk : sequence
        Defines the (discrete) distribution. ``pk[i]`` is the (possibly
        unnormalized) probability of event ``i``.
    qk : sequence, optional
        Sequence against which the relative entropy is computed. Should be in
        the same format as `pk`.
    base : float, optional
        The logarithmic base to use, defaults to ``e`` (natural logarithm).

    Returns
    -------
    S : float
        The calculated entropy.

    """
    pk = asarray(pk)
    pk = 1.0*pk / sum(pk, axis=0)
    if qk is None:
        vec = xlogy(pk, pk)
    else:
        qk = asarray(qk)
        if len(qk) != len(pk):
            raise ValueError("qk and pk must have same length.")
        qk = 1.0*qk / sum(qk, axis=0)
        # If qk is zero anywhere, then unless pk is zero at those places
        #   too, the relative entropy is infinite.
        mask = qk == 0.0
        qk[mask] = 1.0  # Avoid the divide-by-zero warning
        quotient = pk / qk
        vec = -xlogy(pk, quotient)
        vec[mask & (pk != 0.0)] = -inf
        vec[mask & (pk == 0.0)] = 0.0
    S = -sum(vec, axis=0)
    if base is not None:
        S /= log(base)
    return S


# Must over-ride one of _pmf or _cdf or pass in
#  x_k, p(x_k) lists in initialization

class rv_discrete(rv_generic):
    """
    A generic discrete random variable class meant for subclassing.

    `rv_discrete` is a base class to construct specific distribution classes
    and instances from for discrete random variables. rv_discrete can be used
    to construct an arbitrary distribution with defined by a list of support
    points and the corresponding probabilities.

    Parameters
    ----------
    a : float, optional
        Lower bound of the support of the distribution, default: 0
    b : float, optional
        Upper bound of the support of the distribution, default: plus infinity
    moment_tol : float, optional
        The tolerance for the generic calculation of moments
    values : tuple of two array_like
        (xk, pk) where xk are points (integers) with positive probability pk
        with sum(pk) = 1
    inc : integer
        increment for the support of the distribution, default: 1
        other values have not been tested
    badvalue : object, optional
        The value in (masked) arrays that indicates a value that should be
        ignored.
    name : str, optional
        The name of the instance. This string is used to construct the default
        example for distributions.
    longname : str, optional
        This string is used as part of the first line of the docstring returned
        when a subclass has no docstring of its own. Note: `longname` exists
        for backwards compatibility, do not use for new subclasses.
    shapes : str, optional
        The shape of the distribution. For example ``"m, n"`` for a
        distribution that takes two integers as the first two arguments for all
        its methods.
    extradoc :  str, optional
        This string is used as the last part of the docstring returned when a
        subclass has no docstring of its own. Note: `extradoc` exists for
        backwards compatibility, do not use for new subclasses.

    Methods
    -------
    generic.rvs(<shape(s)>, loc=0, size=1)
        random variates

    generic.pmf(x, <shape(s)>, loc=0)
        probability mass function

    logpmf(x, <shape(s)>, loc=0)
        log of the probability density function

    generic.cdf(x, <shape(s)>, loc=0)
        cumulative density function

    generic.logcdf(x, <shape(s)>, loc=0)
        log of the cumulative density function

    generic.sf(x, <shape(s)>, loc=0)
        survival function (1-cdf --- sometimes more accurate)

    generic.logsf(x, <shape(s)>, loc=0, scale=1)
        log of the survival function

    generic.ppf(q, <shape(s)>, loc=0)
        percent point function (inverse of cdf --- percentiles)

    generic.isf(q, <shape(s)>, loc=0)
        inverse survival function (inverse of sf)

    generic.moment(n, <shape(s)>, loc=0)
        non-central n-th moment of the distribution.  May not work for array
        arguments.

    generic.stats(<shape(s)>, loc=0, moments='mv')
        mean('m', axis=0), variance('v'), skew('s'), and/or kurtosis('k')

    generic.entropy(<shape(s)>, loc=0)
        entropy of the RV

    generic.expect(func=None, args=(), loc=0, lb=None, ub=None,
            conditional=False)
        Expected value of a function with respect to the distribution.
        Additional kwd arguments passed to integrate.quad

    generic.median(<shape(s)>, loc=0)
        Median of the distribution.

    generic.mean(<shape(s)>, loc=0)
        Mean of the distribution.

    generic.std(<shape(s)>, loc=0)
        Standard deviation of the distribution.

    generic.var(<shape(s)>, loc=0)
        Variance of the distribution.

    generic.interval(alpha, <shape(s)>, loc=0)
        Interval that with `alpha` percent probability contains a random
        realization of this distribution.

    generic(<shape(s)>, loc=0)
        calling a distribution instance returns a frozen distribution

    Notes
    -----

    You can construct an arbitrary discrete rv where ``P{X=xk} = pk``
    by passing to the rv_discrete initialization method (through the
    values=keyword) a tuple of sequences (xk, pk) which describes only those
    values of X (xk) that occur with nonzero probability (pk).

    To create a new discrete distribution, we would do the following::

        class poisson_gen(rv_discrete):
            #"Poisson distribution"
            def _pmf(self, k, mu):
                ...

    and create an instance::

        poisson = poisson_gen(name="poisson",
                              longname='A Poisson')

    The docstring can be created from a template.

    Alternatively, the object may be called (as a function) to fix the shape
    and location parameters returning a "frozen" discrete RV object::

        myrv = generic(<shape(s)>, loc=0)
            - frozen RV object with the same methods but holding the given
              shape and location fixed.

    A note on ``shapes``: subclasses need not specify them explicitly. In this
    case, the `shapes` will be automatically deduced from the signatures of the
    overridden methods.
    If, for some reason, you prefer to avoid relying on introspection, you can
    specify ``shapes`` explicitly as an argument to the instance constructor.


    Examples
    --------

    Custom made discrete distribution:

    >>> import matplotlib.pyplot as plt
    >>> from scipy import stats
    >>> xk = np.arange(7)
    >>> pk = (0.1, 0.2, 0.3, 0.1, 0.1, 0.1, 0.1)
    >>> custm = stats.rv_discrete(name='custm', values=(xk, pk))
    >>> h = plt.plot(xk, custm.pmf(xk))

    Random number generation:

    >>> R = custm.rvs(size=100)

    Display frozen pmf:

    >>> numargs = generic.numargs
    >>> [ <shape(s)> ] = ['Replace with resonable value', ]*numargs
    >>> rv = generic(<shape(s)>)
    >>> x = np.arange(0, np.min(rv.dist.b, 3)+1)
    >>> h = plt.plot(x, rv.pmf(x))

    Here, ``rv.dist.b`` is the right endpoint of the support of ``rv.dist``.

    Check accuracy of cdf and ppf:

    >>> prb = generic.cdf(x, <shape(s)>)
    >>> h = plt.semilogy(np.abs(x-generic.ppf(prb, <shape(s)>))+1e-20)

    """

    def __init__(self, a=0, b=inf, name=None, badvalue=None,
                 moment_tol=1e-8, values=None, inc=1, longname=None,
                 shapes=None, extradoc=None):

        super(rv_discrete, self).__init__()

        # cf generic freeze
        self._ctor_param = dict(a=a, b=b, name=name, badvalue=badvalue,
                 moment_tol=moment_tol, values=values, inc=inc,
                 longname=longname, shapes=shapes, extradoc=extradoc)

        if badvalue is None:
            badvalue = nan
        if name is None:
            name = 'Distribution'
        self.badvalue = badvalue
        self.a = a
        self.b = b
        self.name = name
        self.moment_tol = moment_tol
        self.inc = inc
        self._cdfvec = vectorize(self._cdf_single, otypes='d')
        self.return_integers = 1
        self.vecentropy = vectorize(self._entropy)
        self.shapes = shapes
        self.extradoc = extradoc

        if values is not None:
            self.xk, self.pk = values
            self.return_integers = 0
            indx = argsort(ravel(self.xk))
            self.xk = take(ravel(self.xk), indx, 0)
            self.pk = take(ravel(self.pk), indx, 0)
            self.a = self.xk[0]
            self.b = self.xk[-1]
            self.P = dict(zip(self.xk, self.pk))
            self.qvals = np.cumsum(self.pk, axis=0)
            self.F = dict(zip(self.xk, self.qvals))
            decreasing_keys = sorted(self.F.keys(), reverse=True)
            self.Finv = dict((self.F[k], k) for k in decreasing_keys)
            self._ppf = instancemethod(vectorize(_drv_ppf, otypes='d'),
                                       self, rv_discrete)
            self._pmf = instancemethod(vectorize(_drv_pmf, otypes='d'),
                                       self, rv_discrete)
            self._cdf = instancemethod(vectorize(_drv_cdf, otypes='d'),
                                       self, rv_discrete)
            self._nonzero = instancemethod(_drv_nonzero, self, rv_discrete)
            self.generic_moment = instancemethod(_drv_moment,
                                                 self, rv_discrete)
            self.moment_gen = instancemethod(_drv_moment_gen,
                                             self, rv_discrete)
            self._construct_argparser(meths_to_inspect=[_drv_pmf],
                                      locscale_in='loc=0',
                                      # scale=1 for discrete RVs
                                      locscale_out='loc, 1')
        else:
            self._construct_argparser(meths_to_inspect=[self._pmf, self._cdf],
                                      locscale_in='loc=0',
                                      # scale=1 for discrete RVs
                                      locscale_out='loc, 1')

            # nin correction needs to be after we know numargs
            # correct nin for generic moment vectorization
            _vec_generic_moment = vectorize(_drv2_moment, otypes='d')
            _vec_generic_moment.nin = self.numargs + 2
            self.generic_moment = instancemethod(_vec_generic_moment,
                                                 self, rv_discrete)
            # backwards compat.  was removed in 0.14.0, put back but
            # deprecated in 0.14.1:
            self.vec_generic_moment = np.deprecate(_vec_generic_moment,
                                                   "vec_generic_moment",
                                                   "generic_moment")

            # correct nin for ppf vectorization
            _vppf = vectorize(_drv2_ppfsingle, otypes='d')
            _vppf.nin = self.numargs + 2  # +1 is for self
            self._ppfvec = instancemethod(_vppf,
                                          self, rv_discrete)

        # now that self.numargs is defined, we can adjust nin
        self._cdfvec.nin = self.numargs + 1

        # generate docstring for subclass instances
        if longname is None:
            if name[0] in ['aeiouAEIOU']:
                hstr = "An "
            else:
                hstr = "A "
            longname = hstr + name

        if sys.flags.optimize < 2:
            # Skip adding docstrings if interpreter is run with -OO
            if self.__doc__ is None:
                self._construct_default_doc(longname=longname,
                                            extradoc=extradoc)
            else:
                dct = dict(distdiscrete)
                self._construct_doc(docdict_discrete, dct.get(self.name))

            #discrete RV do not have the scale parameter, remove it
            self.__doc__ = self.__doc__.replace(
                '\n    scale : array_like, '
                'optional\n        scale parameter (default=1)', '')

    def _construct_default_doc(self, longname=None, extradoc=None):
        """Construct instance docstring from the rv_discrete template."""
        if extradoc is None:
            extradoc = ''
        if extradoc.startswith('\n\n'):
            extradoc = extradoc[2:]
        self.__doc__ = ''.join(['%s discrete random variable.' % longname,
                                '\n\n%(before_notes)s\n', docheaders['notes'],
                                extradoc, '\n%(example)s'])
        self._construct_doc(docdict_discrete)

    def _nonzero(self, k, *args):
        return floor(k) == k

    def _pmf(self, k, *args):
        return self._cdf(k, *args) - self._cdf(k-1, *args)

    def _logpmf(self, k, *args):
        return log(self._pmf(k, *args))

    def _cdf_single(self, k, *args):
        m = arange(int(self.a), k+1)
        return sum(self._pmf(m, *args), axis=0)

    def _cdf(self, x, *args):
        k = floor(x)
        return self._cdfvec(k, *args)

    # generic _logcdf, _sf, _logsf, _ppf, _isf, _rvs defined in rv_generic

    def rvs(self, *args, **kwargs):
        """
        Random variates of given type.

        Parameters
        ----------
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).
        size : int or tuple of ints, optional
            Defining number of random variates (default=1).  Note that `size`
            has to be given as keyword, not as positional argument.

        Returns
        -------
        rvs : ndarray or scalar
            Random variates of given `size`.

        """
        kwargs['discrete'] = True
        return super(rv_discrete, self).rvs(*args, **kwargs)

    def pmf(self, k, *args, **kwds):
        """
        Probability mass function at k of the given RV.

        Parameters
        ----------
        k : array_like
            quantiles
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information)
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        pmf : array_like
            Probability mass function evaluated at k

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        k = asarray((k-loc))
        cond0 = self._argcheck(*args)
        cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k, *args)
        cond = cond0 & cond1
        output = zeros(shape(cond), 'd')
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        if any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, np.clip(self._pmf(*goodargs), 0, 1))
        if output.ndim == 0:
            return output[()]
        return output

    def logpmf(self, k, *args, **kwds):
        """
        Log of the probability mass function at k of the given RV.

        Parameters
        ----------
        k : array_like
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter. Default is 0.

        Returns
        -------
        logpmf : array_like
            Log of the probability mass function evaluated at k.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        k = asarray((k-loc))
        cond0 = self._argcheck(*args)
        cond1 = (k >= self.a) & (k <= self.b) & self._nonzero(k, *args)
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(NINF)
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        if any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, self._logpmf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def cdf(self, k, *args, **kwds):
        """
        Cumulative distribution function of the given RV.

        Parameters
        ----------
        k : array_like, int
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        cdf : ndarray
            Cumulative distribution function evaluated at `k`.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        k = asarray((k-loc))
        cond0 = self._argcheck(*args)
        cond1 = (k >= self.a) & (k < self.b)
        cond2 = (k >= self.b)
        cond = cond0 & cond1
        output = zeros(shape(cond), 'd')
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        place(output, cond2*(cond0 == cond0), 1.0)

        if any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, np.clip(self._cdf(*goodargs), 0, 1))
        if output.ndim == 0:
            return output[()]
        return output

    def logcdf(self, k, *args, **kwds):
        """
        Log of the cumulative distribution function at k of the given RV

        Parameters
        ----------
        k : array_like, int
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        logcdf : array_like
            Log of the cumulative distribution function evaluated at k.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        k = asarray((k-loc))
        cond0 = self._argcheck(*args)
        cond1 = (k >= self.a) & (k < self.b)
        cond2 = (k >= self.b)
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(NINF)
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        place(output, cond2*(cond0 == cond0), 0.0)

        if any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, self._logcdf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def sf(self, k, *args, **kwds):
        """
        Survival function (1-cdf) at k of the given RV.

        Parameters
        ----------
        k : array_like
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        sf : array_like
            Survival function evaluated at k.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        k = asarray(k-loc)
        cond0 = self._argcheck(*args)
        cond1 = (k >= self.a) & (k <= self.b)
        cond2 = (k < self.a) & cond0
        cond = cond0 & cond1
        output = zeros(shape(cond), 'd')
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        place(output, cond2, 1.0)
        if any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, np.clip(self._sf(*goodargs), 0, 1))
        if output.ndim == 0:
            return output[()]
        return output

    def logsf(self, k, *args, **kwds):
        """
        Log of the survival function of the given RV.

        Returns the log of the "survival function," defined as ``1 - cdf``,
        evaluated at `k`.

        Parameters
        ----------
        k : array_like
            Quantiles.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        logsf : ndarray
            Log of the survival function evaluated at `k`.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        k, loc = map(asarray, (k, loc))
        args = tuple(map(asarray, args))
        k = asarray(k-loc)
        cond0 = self._argcheck(*args)
        cond1 = (k >= self.a) & (k <= self.b)
        cond2 = (k < self.a) & cond0
        cond = cond0 & cond1
        output = empty(shape(cond), 'd')
        output.fill(NINF)
        place(output, (1-cond0) + np.isnan(k), self.badvalue)
        place(output, cond2, 0.0)
        if any(cond):
            goodargs = argsreduce(cond, *((k,)+args))
            place(output, cond, self._logsf(*goodargs))
        if output.ndim == 0:
            return output[()]
        return output

    def ppf(self, q, *args, **kwds):
        """
        Percent point function (inverse of cdf) at q of the given RV

        Parameters
        ----------
        q : array_like
            Lower tail probability.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).
        scale : array_like, optional
            Scale parameter (default=1).

        Returns
        -------
        k : array_like
            Quantile corresponding to the lower tail probability, q.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        q, loc = map(asarray, (q, loc))
        args = tuple(map(asarray, args))
        cond0 = self._argcheck(*args) & (loc == loc)
        cond1 = (q > 0) & (q < 1)
        cond2 = (q == 1) & cond0
        cond = cond0 & cond1
        output = valarray(shape(cond), value=self.badvalue, typecode='d')
        # output type 'd' to handle nin and inf
        place(output, (q == 0)*(cond == cond), self.a-1)
        place(output, cond2, self.b)
        if any(cond):
            goodargs = argsreduce(cond, *((q,)+args+(loc,)))
            loc, goodargs = goodargs[-1], goodargs[:-1]
            place(output, cond, self._ppf(*goodargs) + loc)

        if output.ndim == 0:
            return output[()]
        return output

    def isf(self, q, *args, **kwds):
        """
        Inverse survival function (1-sf) at q of the given RV.

        Parameters
        ----------
        q : array_like
            Upper tail probability.
        arg1, arg2, arg3,... : array_like
            The shape parameter(s) for the distribution (see docstring of the
            instance object for more information).
        loc : array_like, optional
            Location parameter (default=0).

        Returns
        -------
        k : ndarray or scalar
            Quantile corresponding to the upper tail probability, q.

        """
        args, loc, _ = self._parse_args(*args, **kwds)
        q, loc = map(asarray, (q, loc))
        args = tuple(map(asarray, args))
        cond0 = self._argcheck(*args) & (loc == loc)
        cond1 = (q > 0) & (q < 1)
        cond2 = (q == 1) & cond0
        cond = cond0 & cond1

        # same problem as with ppf; copied from ppf and changed
        output = valarray(shape(cond), value=self.badvalue, typecode='d')
        # output type 'd' to handle nin and inf
        place(output, (q == 0)*(cond == cond), self.b)
        place(output, cond2, self.a-1)

        # call place only if at least 1 valid argument
        if any(cond):
            goodargs = argsreduce(cond, *((q,)+args+(loc,)))
            loc, goodargs = goodargs[-1], goodargs[:-1]
            # PB same as ticket 766
            place(output, cond, self._isf(*goodargs) + loc)

        if output.ndim == 0:
            return output[()]
        return output

    def _entropy(self, *args):
        if hasattr(self, 'pk'):
            return entropy(self.pk)
        else:
            mu = int(self.stats(*args, **{'moments': 'm'}))
            val = self.pmf(mu, *args)
            ent = -xlogy(val, val)
            k = 1
            term = 1.0
            while (abs(term) > _EPS):
                val = self.pmf(mu+k, *args)
                term = -xlogy(val, val)
                val = self.pmf(mu-k, *args)
                term -= xlogy(val, val)
                k += 1
                ent += term
            return ent

    def expect(self, func=None, args=(), loc=0, lb=None, ub=None,
               conditional=False):
        """
        Calculate expected value of a function with respect to the distribution
        for discrete distribution

        Parameters
        ----------
        fn : function (default: identity mapping)
            Function for which sum is calculated. Takes only one argument.
        args : tuple
            argument (parameters) of the distribution
        lb, ub : numbers, optional
            lower and upper bound for integration, default is set to the
            support of the distribution, lb and ub are inclusive (ul<=k<=ub)
        conditional : bool, optional
            Default is False.
            If true then the expectation is corrected by the conditional
            probability of the integration interval. The return value is the
            expectation of the function, conditional on being in the given
            interval (k such that ul<=k<=ub).

        Returns
        -------
        expect : float
            Expected value.

        Notes
        -----
        * function is not vectorized
        * accuracy: uses self.moment_tol as stopping criterium
          for heavy tailed distribution e.g. zipf(4), accuracy for
          mean, variance in example is only 1e-5,
          increasing precision (moment_tol) makes zipf very slow
        * suppnmin=100 internal parameter for minimum number of points to
          evaluate could be added as keyword parameter, to evaluate functions
          with non-monotonic shapes, points include integers in (-suppnmin,
          suppnmin)
        * uses maxcount=1000 limits the number of points that are evaluated
          to break loop for infinite sums
          (a maximum of suppnmin+1000 positive plus suppnmin+1000 negative
          integers are evaluated)

        """

        # moment_tol = 1e-12 # increase compared to self.moment_tol,
        # too slow for only small gain in precision for zipf

        # avoid endless loop with unbound integral, eg. var of zipf(2)
        maxcount = 1000
        suppnmin = 100  # minimum number of points to evaluate (+ and -)

        if func is None:
            def fun(x):
                # loc and args from outer scope
                return (x+loc)*self._pmf(x, *args)
        else:
            def fun(x):
                # loc and args from outer scope
                return func(x+loc)*self._pmf(x, *args)
        # used pmf because _pmf does not check support in randint and there
        # might be problems(?) with correct self.a, self.b at this stage maybe
        # not anymore, seems to work now with _pmf

        self._argcheck(*args)  # (re)generate scalar self.a and self.b
        if lb is None:
            lb = (self.a)
        else:
            lb = lb - loc   # convert bound for standardized distribution
        if ub is None:
            ub = (self.b)
        else:
            ub = ub - loc   # convert bound for standardized distribution
        if conditional:
            if np.isposinf(ub)[()]:
                # work around bug: stats.poisson.sf(stats.poisson.b, 2) is nan
                invfac = 1 - self.cdf(lb-1, *args)
            else:
                invfac = 1 - self.cdf(lb-1, *args) - self.sf(ub, *args)
        else:
            invfac = 1.0

        tot = 0.0
        low, upp = self._ppf(0.001, *args), self._ppf(0.999, *args)
        low = max(min(-suppnmin, low), lb)
        upp = min(max(suppnmin, upp), ub)
        supp = np.arange(low, upp+1, self.inc)  # check limits
        tot = np.sum(fun(supp))
        diff = 1e100
        pos = upp + self.inc
        count = 0

        # handle cases with infinite support

        while (pos <= ub) and (diff > self.moment_tol) and count <= maxcount:
            diff = fun(pos)
            tot += diff
            pos += self.inc
            count += 1

        if self.a < 0:  # handle case when self.a = -inf
            diff = 1e100
            pos = low - self.inc
            while ((pos >= lb) and (diff > self.moment_tol) and
                   count <= maxcount):
                diff = fun(pos)
                tot += diff
                pos -= self.inc
                count += 1
        if count > maxcount:
            warnings.warn('expect(): sum did not converge', RuntimeWarning)
        return tot/invfac


def get_distribution_names(namespace_pairs, rv_base_class):
    """
    Collect names of statistical distributions and their generators.

    Parameters
    ----------
    namespace_pairs : sequence
        A snapshot of (name, value) pairs in the namespace of a module.
    rv_base_class : class
        The base class of random variable generator classes in a module.

    Returns
    -------
    distn_names : list of strings
        Names of the statistical distributions.
    distn_gen_names : list of strings
        Names of the generators of the statistical distributions.
        Note that these are not simply the names of the statistical
        distributions, with a _gen suffix added.

    """
    distn_names = []
    distn_gen_names = []
    for name, value in namespace_pairs:
        if name.startswith('_'):
            continue
        if name.endswith('_gen') and issubclass(value, rv_base_class):
            distn_gen_names.append(name)
        if isinstance(value, rv_base_class):
            distn_names.append(name)
    return distn_names, distn_gen_names